
(a)
Interpretation:
Thegeometrical structure of
Concept introduction:
VSEPR theory stands as Valence Shell Electron Pair Repulsion Theory. It helps to predict the molecular shape or geometry of the molecule with the help of the number of bond pair or lone pair present in it. According to VSEPR theory, the presence of lone pair on the central atom of molecule causes deviation from standard molecular geometry. This is because of the repulsion between lone pairs and bond pairs of the central atom of the molecule. The order of repulsion is:
Lone pair-lone pair > lone pair-bond pair > bond pair-bond pair
Based on the number of lone pair and bond pair, the molecular geometry can be determined with the help of below table.
Total number of electron pairs | Bond pair | Lone pair | Geometry |
2 | 2 | 0 | Linear |
2 | 1 | 1 | Linear |
3 | 3 | 0 | Trigonal planar |
3 | 2 | 1 | Bent |
4 | 4 | 0 | Tetrahedral |
4 | 3 | 1 | Trigonal pyramidal |
4 | 2 | 2 | Bent |
5 | 5 | 0 | Trigonal bipyramidal |
5 | 4 | 1 | See saw |
5 | 3 | 2 | T shaped |
5 | 2 | 3 | Linear |
6 | 6 | 0 | Octahedral |
(b)
Interpretation:
The geometrical structure of
Concept introduction:
VSEPR theory stands as Valence Shell Electron Pair Repulsion Theory. It helps to predict the molecular shape or geometry of the molecule with the help of the number of bond pair or lone pair present in it. According to VSEPR theory, the presence of lone pair on the central atom of molecule causes deviation from standard molecular geometry. This is because of the repulsion between lone pairs and bond pairs of the central atom of the molecule. The order of repulsion is:
Lone pair-lone pair > lone pair-bond pair > bond pair-bond pair
Based on the number of lone pair and bond pair, the molecular geometry can be determined with the help of below table.
Total number of electron pairs | Bond pair | Lone pair | Geometry |
2 | 2 | 0 | Linear |
2 | 1 | 1 | Linear |
3 | 3 | 0 | Trigonal planar |
3 | 2 | 1 | Bent |
4 | 4 | 0 | Tetrahedral |
4 | 3 | 1 | Trigonal pyramidal |
4 | 2 | 2 | Bent |
5 | 5 | 0 | Trigonal bipyramidal |
5 | 4 | 1 | See saw |
5 | 3 | 2 | T shaped |
5 | 2 | 3 | Linear |
6 | 6 | 0 | Octahedral |
(c)
Interpretation:
The geometrical structure of
Concept introduction:
VSEPR theory stands as Valence Shell Electron Pair Repulsion Theory. It helps to predict the molecular shape or geometry of the molecule with the help of the number of bond pair or lone pair present in it. According to VSEPR theory, the presence of lone pair on the central atom of molecule causes deviation from standard molecular geometry. This is because of the repulsion between lone pairs and bond pairs of the central atom of the molecule. The order of repulsion is:
Lone pair-lone pair > lone pair-bond pair > bond pair-bond pair
Based on the number of lone pair and bond pair, the molecular geometry can be determined with the help of below table.
Total number of electron pairs. | Bond pair | Lone pair | Geometry |
2 | 2 | 0 | Linear |
2 | 1 | 1 | Linear |
3 | 3 | 0 | Trigonal planar |
3 | 2 | 1 | Bent |
4 | 4 | 0 | Tetrahedral |
4 | 3 | 1 | Trigonal pyramidal |
4 | 2 | 2 | Bent |
5 | 5 | 0 | Trigonal bipyramidal |
5 | 4 | 1 | See saw |
5 | 3 | 2 | T shaped |
5 | 2 | 3 | Linear |
6 | 6 | 0 | Octahedral |
(d)
Interpretation:
The geometrical structure of
Concept introduction:
VSEPR theory stands as Valence Shell Electron Pair Repulsion Theory. It helps to predict the molecular shape or geometry of the molecule with the help of the number of bond pair or lone pair present in it. According to VSEPR theory, the presence of lone pair on the central atom of molecule causes deviation from standard molecular geometry. This is because of the repulsion between lone pairs and bond pairs of the central atom of the molecule. The order of repulsion is:
Lone pair-lone pair > lone pair-bond pair > bond pair-bond pair
Based on the number of lone pair and bond pair, the molecular geometry can be determined with the help of below table.
Total number of electron pairs | Bond pair | Lone pair | Geometry |
2 | 2 | 0 | Linear |
2 | 1 | 1 | Linear |
3 | 3 | 0 | Trigonal planar |
3 | 2 | 1 | Bent |
4 | 4 | 0 | Tetrahedral |
4 | 3 | 1 | Trigonal pyramidal |
4 | 2 | 2 | Bent |
5 | 5 | 0 | Trigonal bipyramidal |
5 | 4 | 1 | See saw |
5 | 3 | 2 | T shaped |
5 | 2 | 3 | Linear |
6 | 6 | 0 | Octahedral |

Want to see the full answer?
Check out a sample textbook solution
Chapter 22 Solutions
CHEMISTRY-MASTERINGCHEMISTRY W/ETEXT
- Can I please get help with this?arrow_forwardUse the Henderson-Hasselbalch equation to calculate pH of a buffer containing 0.050M benzoic acidand 0.150M sodium benzoate. The Ka of benzoic acid is 6.5 x 10-5arrow_forwardA. Draw the structure of each of the following alcohols. Then draw and name the product you would expect to produce by the oxidation of each. a. 4-Methyl-2-heptanol b. 3,4-Dimethyl-1-pentanol c. 4-Ethyl-2-heptanol d. 5,7-Dichloro-3-heptanolarrow_forward
- What is the pH of a 1.0 L buffer made with 0.300 mol of HF (Ka = 6.8 × 10⁻⁴) and 0.200 mol of NaF to which 0.160 mol of NaOH were added?arrow_forwardCan I please get help with this.arrow_forwardDetermine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction. N₂H₅ClO₄arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





