Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 4Q
Figure 21-14 shows two charged particles on an axis. The charges are free to move. However, a third charged particle can be placed at a certain point such that all three particles are then in equilibrium. (a) Is that point to the left of the first two particles, to their right, or between them? (b) Should the third particle be positively or negatively charged? (c) Is the equilibrium stable or unstable?
Figure 21-14 Question 4.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
*7 In Fig. 21-23, three charged
particles lie on an x axis. Particles
1 and 2 are fixed in place. Particle
3 is free to move, but the net elec- Figure 21-23 Problems 7 and 40.
trostatic force on it from particles
1 and 2 happens to be zero. If L23 = L12, what is the ratio ql92?
-L12 L-
18 In Fig. 21-29a, three positively
charged particles are fixed on an x
BC
(a)
axis. Particles B and C are so close
to each other that they can be con-
sidered to be at the same distance
B.
A
from particle A. The net force on
particle A due to particles B and
C is 2.014 x 10-23 N in the negative
direction of the x axis. In Fig. 21-
29b, particle B has been moved to the opposite side of A but is still
at the same distance from it. The net force on A is now 2.877 x
10-24 N in the negative direction of the x axis. What is the ratio
Id9n?
(b)
Figure 21-29 Problem 18.
Two fixed charged particles of Charge of q1= 1. 28x10^-18C and q2=-3.2x10^-19C are placed in x-y plane in such a way that q1 is placed at origin and q2 at x = 4.0cm.
At what point can a proton be placed so that it is in equilibrium?
Chapter 21 Solutions
Fundamentals of Physics Extended
Ch. 21 - Figure 21-11 shows 1 four situations in which five...Ch. 21 - Figure 21-12 shows three pairs of identical...Ch. 21 - Figure 21-13 shows four situations in which...Ch. 21 - Figure 21-14 shows two charged particles on an...Ch. 21 - In Fig. 21-15, a central particle of charge q is...Ch. 21 - A positively charged ball is brought close to an...Ch. 21 - Figure 21-16 shows three situations involving a...Ch. 21 - Figure 21-17 shows four arrangements of charged...Ch. 21 - Figure 21-18 shows four situations in which...Ch. 21 - In Fig. 21-19, a central particle of charge 2q is...
Ch. 21 - Figure 21-20 shows three identical conducting...Ch. 21 - Figure 21-21 shows four situations in which a...Ch. 21 - SSM ILW Of the charge Q initially on a tiny...Ch. 21 - Identical isolated conducting spheres 1 and 2 have...Ch. 21 - SSM What must be the distance between point charge...Ch. 21 - In the return stroke of a typical lightning bolt,...Ch. 21 - A particle of charge 3.00 106 C is 12.0 cm...Ch. 21 - ILW Two equally chained particles are held 3.2 ...Ch. 21 - In Fig. 21-23, three charged particles lie on an x...Ch. 21 - In Fig. 21-24, three identical conducting spheres...Ch. 21 - SSM WWW Two identical conducting spheres, fixed in...Ch. 21 - GO In Fig. 21-25, four particles form a square....Ch. 21 - ILW In Fig. 21-25, the particles have charges q1 =...Ch. 21 - Two particles are fixed on an x axis. Particle 1...Ch. 21 - GO In Fig. 21-26, particle 1 of charge l.0 C and...Ch. 21 - Three particles are fixed on an x axis. Particle 1...Ch. 21 - GO The charges and coordinates of two charged...Ch. 21 - GO In Fig. 21-27a, particle l of charge q1 and...Ch. 21 - In Fig.21-28a, particles 1 and 2 have charge 20.0...Ch. 21 - In Fig. 21-29a, three positively charged particles...Ch. 21 - SSM WWW In Fig. 21-26, particle 1 of charge q and...Ch. 21 - GO Figure 21-30a shows an arrangement of three...Ch. 21 - GO A nonconducting spherical shell, with an inner...Ch. 21 - GO Figure 21-31 shows an arrangement of four...Ch. 21 - GO In Fig. 21-32, particles 1 and 2 of charge q1 =...Ch. 21 - Two tiny, spherical water drops, with identical...Ch. 21 - ILW How many electrons would have to be removed...Ch. 21 - Prob. 26PCh. 21 - SSM The magnitude of the electrostatic force...Ch. 21 - A current of 0.300 A through your chest can send...Ch. 21 - GO In Fig. 21-33, particles 2 and 4, of charge e,...Ch. 21 - In Fig. 21-26, particles 1 and 2 are fixed in...Ch. 21 - ILW Earths atmosphere is constantly bombarded by...Ch. 21 - GO Figure 21-34a shows charged particles 1 and 2...Ch. 21 - Calculate the number of coulombs of positive...Ch. 21 - GO Figure 21-35 shows electrons 1 and 2 on an x...Ch. 21 - SSM In crystals of the salt cesium chloride,...Ch. 21 - Electrons and positrons are produced by the...Ch. 21 - Prob. 37PCh. 21 - GO Figure 21-37 shows four identical conducting...Ch. 21 - SSM In Fig. 21-38, particle 1 of charge 4e is...Ch. 21 - In Fig, 21-23, particles 1 and 2 are fixed in...Ch. 21 - a What equal positive charges would have to be...Ch. 21 - In Fig. 21-39, two tiny conducting balls of...Ch. 21 - a Explain what happens to the balls of Problem 42...Ch. 21 - SSM How far apart must two protons be if the...Ch. 21 - How many megacoulombs of positive charge are in...Ch. 21 - In Fig. 21-40, four particles are fixed along an x...Ch. 21 - GO Point charges of 6.0 C and 4.0 C are placed on...Ch. 21 - In Fig. 21-41, three identical conducting spheres...Ch. 21 - A neutron consists of ore up quark of charge 2e/3...Ch. 21 - Figure 21-42 shows a long, nonconducting, massless...Ch. 21 - A charged nonconducting rod, with a length of 2.00...Ch. 21 - A particle of charge Q is Fixed at the origin of...Ch. 21 - What would be the magnitude of the electrostatic...Ch. 21 - A charge of 6.0 C is to be split into two parts...Ch. 21 - Of the charge Q on a tiny sphere, a fraction is...Ch. 21 - If a cat repeatedly rubs against your cotton...Ch. 21 - We know that the negative charge on the electron...Ch. 21 - In Fig, 21-26, particle 1 of charge 80.0C and...Ch. 21 - What is the total charge in coulombs of 75.0 kg of...Ch. 21 - GO In Fig. 21-43, six charged particles surround...Ch. 21 - Three charged particles form a triangle: particle...Ch. 21 - SSM In Fig. 21-44, what are the a magnitude and b...Ch. 21 - Two point charges of 30 nC and 40 nC are held...Ch. 21 - Two small, positively charged spheres have a...Ch. 21 - The initial charges on the three identical metal...Ch. 21 - An electron is in a vacuum near Earths surface and...Ch. 21 - SSM In Fig. 21-26, particle 1 of charge 5.00q and...Ch. 21 - Two engineering students, John with a mass of 90...Ch. 21 - In the radioactive decay of Eq. 21-13, a 238U...Ch. 21 - In Fig. 21-25, four particles form a square. The...Ch. 21 - In a spherical metal shell of radius R, an...Ch. 21 - An electron is projected with an initial speed vl...Ch. 21 - In an early model of the hydrogen atom the Bohr...Ch. 21 - A100 W lamp has a steady current of 0.83 A in its...Ch. 21 - The charges of an electron and a positron are e...
Additional Science Textbook Solutions
Find more solutions based on key concepts
MAKE CONNECTIONS Balancing selection can maintain variation at a locus (see Concept 21.4). Based on the foragin...
Campbell Biology in Focus (2nd Edition)
Write a statement that compares the width of the meander belt of the Red River to the width of its floodplain.
Applications and Investigations in Earth Science (9th Edition)
Explain the role of gene flow in the biological species concept.
Campbell Biology (11th Edition)
Why is an endospore called a resting structure? Of what advantage is an endospore to a bacterial cell?
Microbiology: An Introduction
13. Flies flap their wings at frequencies much too high for pure muscle action. A hypothesis for how they achie...
College Physics: A Strategic Approach (3rd Edition)
What is the composition of the extracellular matrix of bone tissue?
Principles of Anatomy and Physiology
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A metal sphere with charge +8.00 nC is attached to the left-hand end of a nonconducting rod of length L = 2.00 m. A second sphere with charge +2.00 nC is fixed to the right-hand end of the rod (Fig. P23.53). At what position d along the rod can a charged bead be placed for the bead to be in equilibrium? FIGURE P23.53arrow_forwardProblem 12: A uniformly charged rod of length L = 1.4 m lies along the x-axis with its right end at the origin. The rod has a total charge of Q = 8.2 μC. A point P is located on the x-axis a distance a = 1.8 m to the right of the origin. Part (a) Consider a thin slice of the rod of thickness dx located a distance x away from the origin. What is the direction of the electric field at point P due to the charge on this thin slice of the rod? Part (b) Write an equation for the electric field dE at point P due to the thin slide of the rod dx. Give your answers in terms of the variables Q, L, x, a, dx, and the Coulomb constant, k. Notice that the coordinate x will be less than zero over the length of the rod. Part (c) Integrate the electric field contributions from each slice over the length of the rod to write an equation for the net electric field E at point P. Part (d) Calculate the magnitude of the electric field E in kilonewtons per coulomb (kN/C) at point P due to the charged…arrow_forwardthe answer provided is wrongarrow_forward
- Figures show four situations in which +q -39 +39 -q charged particles are fixed in place on an axis. In which situations is there a point to the left (a) (ь) +3q -3q +q of the particles where an electron will be in equilibrium? (c) (d)arrow_forwardThree charged particles A B and C are placed on Y Axis. A and B are fixed. The particle C feels zero force when the ratio of distance dAB\ dBC =4.7.what is the ratio qA\qB (magnitude only)?arrow_forwardAn infinite line of positive charge lies along the y axis, with charge density λ = 1.90 μC/m. A dipole is placed with its center along the x axis at x = 26.0 cm. The dipole consists of two charges ±10.0 μC separated by 2.00 cm. The axis of the dipole makes an angle of 45.0° with the x axis, and the positive charge is farther from the line of charge than the negative charge. Find the net force exerted on the dipole.arrow_forward
- 42) Three identical conducting spheres are fixed FIGURE P23.41 along a single line. The middle sphere is equidistant from the other two so that the center-to-center dis- tance between the middle sphere and either of the other two is 0.125 m. Initially, only the middle sphere is charged, with Imiddle = +35.6 nC. The middle sphere is later connected by a conducting wire to the sphere on the left. The wire is removed and then used to connect the middle sphere to the sphere on the right. The wire is again removed. a. C What is the charge on each sphere?- b. C Which sphere experiences the greatest electrostatic force? c. N What is the magnitude of that force?arrow_forwardAn infinite line of positive charge lies along the y axis, with charge density λ = 1.30 μC/m. A dipole is placed with its center along the x axis at x = 22.0 cm. The dipole consists of two charges ±10.0 μC separated by 2.00 cm. The axis of the dipole makes an angle of 45.0° with the x axis, and the positive charge is farther from the line of charge than the negative charge. Find the net force exerted on the dipole. = Narrow_forwardCh 18, Problem 45 Two charges are located on the x axis: q1 = +6.1C at x1 = +5.1 cm, and q2 = +6.1C at x2 = -5.1 cm. Two other charges are located on the y axis: q3 = +2.3C at y3 = +4.4 cm, and q4 = -5.8C at y4 = +6.3 cm. Find (a) the magnitude and (b) the direction of the net electric field at the origin.arrow_forward
- 3 In Fig. 21-11, the particles have charges q, = -92 = 300 nC and 93 = -q4 = 200 nC, and distance a = 5.0 cm. What are the (a) magnitude and (b) angle (relative to the +x direction) of the net force on particle 3? %3! a 3arrow_forwardTwo 1.20 m nonconducting rods meet at a right angle. One rod carries +2.50 mC of charge distributed uniformly along its length, and the other carries -2.50 mC distributed uniformly along it (Fig.). (a) Find the magnitude and direction of the electric field these rods produce at point P, which is 60.0 cm from each rod. (b) If an electron is released at P, what are the magnitude and direction of the net force that these rods exert on it?arrow_forwardThree charged particles lie in the x y-coordinate plane at the vertices of an equilateral triangle with side length 0.500 m. All charges are measured in µC. Positive charge A is at the origin. Positive charge B is in the first quadrant, along a line 60.0°counterclockwise from the positive x-axis. Negative charge C is at (0.500, 0). (a) Three point charges, A = 2.35 µC, B = 7.10 µC, and C = −3.90 µC, are located at the corners of an equilateral triangle as in the figure above. Find the magnitude and direction of the electric field at the position of the 2.35 µC charge. (a) magnitude N/C direction ° below the +x-axis (b) How would the electric field at that point be affected if the charge there were doubled? The magnitude of the field would be halved. The field would be unchanged. The magnitude of the field would double.T he magnitude of the field would quadruple. (C) Would the magnitude of the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY