Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 21, Problem 28P
A current of 0.300 A through your chest can send your heart into fibrillation, ruining the normal rhythm of heartbeat and disrupting the flow of blood (and thus oxygen) to your brain. If that current persists for 2.00 min, how many
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A current of 0.300 A through your chest can send your heart into fibrillation, ruining the normal rhythm of heart beat and disrupting the flow of blood (and thus oxygen) to your brain. If that current persists for 1.39 min, how many conduction electrons pass through your heart?
A current of 0.300 A through your chest can send your heart into fibrillation, ruining the normal rhythm of heartbeat and disrupting the flow of blood (and thus oxygen) to your brain. If that current persists for 2.00 min, how many conduction electrons pass through your chest?
A wire with a radius of 2.22mm is made of a conducting material that has an atomic mass of 72.0 grams/mole and a mass density of 6.17x103 kg/m3. You can assume that each atom of the material has one free electron associated with it. What is the drift speed vd in a 19.3 cm long section of wire that is carrying 664 Amps?
Assume 3 significant digits and units of mm/s.
Chapter 21 Solutions
Fundamentals of Physics Extended
Ch. 21 - Figure 21-11 shows 1 four situations in which five...Ch. 21 - Figure 21-12 shows three pairs of identical...Ch. 21 - Figure 21-13 shows four situations in which...Ch. 21 - Figure 21-14 shows two charged particles on an...Ch. 21 - In Fig. 21-15, a central particle of charge q is...Ch. 21 - A positively charged ball is brought close to an...Ch. 21 - Figure 21-16 shows three situations involving a...Ch. 21 - Figure 21-17 shows four arrangements of charged...Ch. 21 - Figure 21-18 shows four situations in which...Ch. 21 - In Fig. 21-19, a central particle of charge 2q is...
Ch. 21 - Figure 21-20 shows three identical conducting...Ch. 21 - Figure 21-21 shows four situations in which a...Ch. 21 - SSM ILW Of the charge Q initially on a tiny...Ch. 21 - Identical isolated conducting spheres 1 and 2 have...Ch. 21 - SSM What must be the distance between point charge...Ch. 21 - In the return stroke of a typical lightning bolt,...Ch. 21 - A particle of charge 3.00 106 C is 12.0 cm...Ch. 21 - ILW Two equally chained particles are held 3.2 ...Ch. 21 - In Fig. 21-23, three charged particles lie on an x...Ch. 21 - In Fig. 21-24, three identical conducting spheres...Ch. 21 - SSM WWW Two identical conducting spheres, fixed in...Ch. 21 - GO In Fig. 21-25, four particles form a square....Ch. 21 - ILW In Fig. 21-25, the particles have charges q1 =...Ch. 21 - Two particles are fixed on an x axis. Particle 1...Ch. 21 - GO In Fig. 21-26, particle 1 of charge l.0 C and...Ch. 21 - Three particles are fixed on an x axis. Particle 1...Ch. 21 - GO The charges and coordinates of two charged...Ch. 21 - GO In Fig. 21-27a, particle l of charge q1 and...Ch. 21 - In Fig.21-28a, particles 1 and 2 have charge 20.0...Ch. 21 - In Fig. 21-29a, three positively charged particles...Ch. 21 - SSM WWW In Fig. 21-26, particle 1 of charge q and...Ch. 21 - GO Figure 21-30a shows an arrangement of three...Ch. 21 - GO A nonconducting spherical shell, with an inner...Ch. 21 - GO Figure 21-31 shows an arrangement of four...Ch. 21 - GO In Fig. 21-32, particles 1 and 2 of charge q1 =...Ch. 21 - Two tiny, spherical water drops, with identical...Ch. 21 - ILW How many electrons would have to be removed...Ch. 21 - Prob. 26PCh. 21 - SSM The magnitude of the electrostatic force...Ch. 21 - A current of 0.300 A through your chest can send...Ch. 21 - GO In Fig. 21-33, particles 2 and 4, of charge e,...Ch. 21 - In Fig. 21-26, particles 1 and 2 are fixed in...Ch. 21 - ILW Earths atmosphere is constantly bombarded by...Ch. 21 - GO Figure 21-34a shows charged particles 1 and 2...Ch. 21 - Calculate the number of coulombs of positive...Ch. 21 - GO Figure 21-35 shows electrons 1 and 2 on an x...Ch. 21 - SSM In crystals of the salt cesium chloride,...Ch. 21 - Electrons and positrons are produced by the...Ch. 21 - Prob. 37PCh. 21 - GO Figure 21-37 shows four identical conducting...Ch. 21 - SSM In Fig. 21-38, particle 1 of charge 4e is...Ch. 21 - In Fig, 21-23, particles 1 and 2 are fixed in...Ch. 21 - a What equal positive charges would have to be...Ch. 21 - In Fig. 21-39, two tiny conducting balls of...Ch. 21 - a Explain what happens to the balls of Problem 42...Ch. 21 - SSM How far apart must two protons be if the...Ch. 21 - How many megacoulombs of positive charge are in...Ch. 21 - In Fig. 21-40, four particles are fixed along an x...Ch. 21 - GO Point charges of 6.0 C and 4.0 C are placed on...Ch. 21 - In Fig. 21-41, three identical conducting spheres...Ch. 21 - A neutron consists of ore up quark of charge 2e/3...Ch. 21 - Figure 21-42 shows a long, nonconducting, massless...Ch. 21 - A charged nonconducting rod, with a length of 2.00...Ch. 21 - A particle of charge Q is Fixed at the origin of...Ch. 21 - What would be the magnitude of the electrostatic...Ch. 21 - A charge of 6.0 C is to be split into two parts...Ch. 21 - Of the charge Q on a tiny sphere, a fraction is...Ch. 21 - If a cat repeatedly rubs against your cotton...Ch. 21 - We know that the negative charge on the electron...Ch. 21 - In Fig, 21-26, particle 1 of charge 80.0C and...Ch. 21 - What is the total charge in coulombs of 75.0 kg of...Ch. 21 - GO In Fig. 21-43, six charged particles surround...Ch. 21 - Three charged particles form a triangle: particle...Ch. 21 - SSM In Fig. 21-44, what are the a magnitude and b...Ch. 21 - Two point charges of 30 nC and 40 nC are held...Ch. 21 - Two small, positively charged spheres have a...Ch. 21 - The initial charges on the three identical metal...Ch. 21 - An electron is in a vacuum near Earths surface and...Ch. 21 - SSM In Fig. 21-26, particle 1 of charge 5.00q and...Ch. 21 - Two engineering students, John with a mass of 90...Ch. 21 - In the radioactive decay of Eq. 21-13, a 238U...Ch. 21 - In Fig. 21-25, four particles form a square. The...Ch. 21 - In a spherical metal shell of radius R, an...Ch. 21 - An electron is projected with an initial speed vl...Ch. 21 - In an early model of the hydrogen atom the Bohr...Ch. 21 - A100 W lamp has a steady current of 0.83 A in its...Ch. 21 - The charges of an electron and a positron are e...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
Explain all answer clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desig...
Cosmic Perspective Fundamentals
The glycine cleavage system is a group of four enzymes that together catalyze the following reaction: glycine+T...
Organic Chemistry (8th Edition)
Why are BSL-4 suits pressurized? Why not just wear tough regular suits?
Microbiology with Diseases by Body System (5th Edition)
Where are skeletal cartilages located?
Human Anatomy & Physiology (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A block in the shape of a rectangular solid has a cross-sectional area of 4.00 cm^2 across its width, a front-to-rear length of 5.00 cm, and a material conductivity of 10^6 Ω x m^-1. The block’s material contains 5.00x10^22 conduction electrons/m^3. A potential difference of 35.0 V is maintained between its front and rear faces. Find: (a) the resistivity of the block material(b) the resistance of the block(c) the current through the block(d) the magnitude of the current density if it is uniform(e) the drift velocity of the conduction electrons (f) the magnitude of the electric field through the blockarrow_forwardA close analogy exists between the flow of energy by heat because of a temperature difference (see Section 19.6) and the flow of electric charge because of a potential difference. In a metal, energy dQ and electrical charge dq are both transported by free electrons. Consequently, a good electri- cal conductor is usually a good thermal conductor as well. Consider a thin conducting slab of thickness dx, area A, and electrical conductivity ơ, with a potential difference dV between opposite faces. (a) Show that the current I = dq/dt is given by the equation on the left: Charge conduction Thermal conduction dq = oA dt dT kA dt dQ AP dx dx In the analogous thermal conduction equation on the right (Eq. 19.17), the rate dQ/dt of energy flow by heat (in SI units of joules per second) is due to a temperature gradient dT/dx in a material of thermal conductivity k. (b) State anal- ogous rules relating the direction of the electric current to the change in potential and relating the direction of…arrow_forwardHow long does it take electrons to get from the car battery to the starting motor? Assume the current is 141 A and the electrons travel through copper wire with cross sectional area 42.5 mm? and length 79.3 cm. The mass den- 3 sity of copper is 8960 kg/m³ and the molar mass is 63.5 g/mol. Avogadro's number is 6.022 x 1028 . Assume that each copper atom contributes one conduction electron. Answer in units of min.arrow_forward
- Silver wire has a cross-sectional area A = 2.0 mm2. A total of 9.4 x 10 electrons pass through the wire in 3.0 s. The conduction electron density in silver is 5.8 x 1028 electrons/m. What is the drift velocity of these electrons?arrow_forwardA wire with a radius of 7.72mm is made of a conducting material that has an atomic mass of 49.4 grams/mole and a mass density of 7.78x10³ kg/m³. You can assume that each atom of the material has one free electron associated with it. What is the drift velocity in a 17.6 cm long section of wire that is carrying 704 Amps? Assume 3 significant digits and units of mm/s. Watch out for units!arrow_forwardProblem 3: A 1.2 g wire has a density of 2.7 g/cm3 and a resistivity of 2.7 × 10−8 Ωm. The wire has a resistance of 15 Ω. a) How long is the wire? b) The wire is made up of atoms with valence 1 and molar mass 26.98 g/mol. What is the drift speed of the electrons when there is a voltage drop of 30 V across the wire?arrow_forward
- A Resistive Heater. You and your team are designing a small tube heater that consists of a small ceramic tube wrapped with a special heater wire composed of Nichrome. When you run an electrical current through the wire, the wire (and therefore the tube) heats up through resistive heating. Nichrome is an alloy composed of 80% nickel and 20% chromium, and has a resistivity of p = 1.25 × 10-602. m. (a) What is the resistance per centimeter of 28-gauge Nichrome wire? ("28 gauge" means the wire has a diameter D= 0.320 mm) (b) You wrap the tube with 41.0 cm of the Nichrome wire, and you want the power output of your heater to be 115 W. What current is needed? (c) What voltage will provide the current calculated in (b)? (a) Number i Units (b) Number i Units (c) Number Unitsarrow_forwardCylindrical-conductors has inner and outer radii of 2 mm and 75 mm, respectively. If V(ρ = 2 mm) = 150 V and V(ρ = 75 mm) = 0 V, εr = 10, dielectric conductivity 5×10-4 s/m, the dielectric resistance equals to?arrow_forwardcopper wire is 10 cm long and has a cross-sectional area of 0.4 mm^2 and the resistance of the wire is 0.4 A ohms. The wire is connected to a source with a voltage of 10 v, what is the movement, knowing that the density of conduction electrons for copper is 8.5 x 10^28 m^-3 8.5 x 10^4 0.5 x 10^(-5) 0.94 x 10^(-4) 0.36 x 10^(-4) Oarrow_forward
- What is the drift velocity in a 10.3 cm long section of wire that is carrying 624 Amps?arrow_forward按ESC | 即可退出全屏模式 Gas insulation is important for transmission lines, outdoor insulators and Gas-insulated- Substations (GIS). Understanding the breakdown mechanisms and behaviour of insulation materials is key to the optimum design of insulation systems. The speed distribution function of electrons in a gas containing electrons, ions and atoms is controlled by the electric field strength, E, and can be expressed as fo (E, v). It satisfies the relationship of (E, v) dv=1. i) ii) Convert the above electron speed distribution function into an electron energy distribution function that satisfies the relationship f(E, ɛ) dɛ =1 where & is the electron energy and ƒ(E, ɛ) the electron energy distribution function. The electron number density is ne and the atom number density is na in the gas. The ionisation cross section of the atoms by electron impact is a function of electron energy, ɛ, and can be written as σ¡ (ɛ). Similarly, the attachment collision cross section between an electron and an…arrow_forwardA close analogy exists between the flow of energy by heat because of a temperature difference (see Section 19.6) and the flow of electric charge because of a potential difference. In a metal, energy dQ and electrical charge dq are both transported by free electrons. Consequently, a good electrical conductor is usually a good thermal conductor as well. Consider a thin conducting slab of thickness dx, area A, and electrical conductivity o, with a potential difference dVbetween opposite faces. (a) Show that the current I= dq| dt is given by the equation on the left: Charge conduction Thermal conduction da = GA dt dQ = kA dx dt dx In the analogous thermal conduction equation on the right (Eq. 19.17), the rate dQ/ dt of energy flow by heat (in SI units of joules per second) is due to a temperature gradient dT/ dx in a material of thermal conductivity k. (b) State analogous rules relating the direction of the electric current to the change in potential and relating the direction of energy…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY