Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 43P
(a) Explain what happens to the balls of Problem 42 if one of them is discharged (loses its charge q to, say, the ground), (b) Find the new equilibrium separation x, using the given values of L and m and the computed value of |q|.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
If two identical conducting spheres are in contact, any excess charge will be evenly distributed between the two. Three identical metal spheres are labeled A, B, and C. Initially, A has 8 nC of charge, B has -4 nC of charge, and C is uncharged. What is the final charge on sphere A if C is touched to B, removed, and then C is touched to A?
Note: Your answer is assumed to be reduced to the highest power possible.
2) In figure, a solid dielectric sphere of radius a = 2 cm, whose
center is at the origin of the coordinate system, is concentric with
a spherical conductor shell of inner radius b = 4 cm and outer
radius c = 5 cm. The dielectric sphere with & = 5 has net charge
of Qi= +15 pC with uniform volume charge density. The
conducting shell has total net charge of Q2 =-10 pC. The medium
except conductor and dielectric is free-space.
a) Sketch the free charge distributions on the figure by indicating relevant total charges and
surfaces/volumes.
b) Find the magnitude of electric field intensity at the regions of
c
A particle of charge q is fixed at point P, and a second particle of mass m and the same charge q is initially held a distance r1 from P. The second particle is then released. Determine its speed when it is a distance r2 from P. Let q = 2.8 µC, m = 30 mg, r1 = 1.3 mm, and r2 = 2.6 mm.
Chapter 21 Solutions
Fundamentals of Physics Extended
Ch. 21 - Figure 21-11 shows 1 four situations in which five...Ch. 21 - Figure 21-12 shows three pairs of identical...Ch. 21 - Figure 21-13 shows four situations in which...Ch. 21 - Figure 21-14 shows two charged particles on an...Ch. 21 - In Fig. 21-15, a central particle of charge q is...Ch. 21 - A positively charged ball is brought close to an...Ch. 21 - Figure 21-16 shows three situations involving a...Ch. 21 - Figure 21-17 shows four arrangements of charged...Ch. 21 - Figure 21-18 shows four situations in which...Ch. 21 - In Fig. 21-19, a central particle of charge 2q is...
Ch. 21 - Figure 21-20 shows three identical conducting...Ch. 21 - Figure 21-21 shows four situations in which a...Ch. 21 - SSM ILW Of the charge Q initially on a tiny...Ch. 21 - Identical isolated conducting spheres 1 and 2 have...Ch. 21 - SSM What must be the distance between point charge...Ch. 21 - In the return stroke of a typical lightning bolt,...Ch. 21 - A particle of charge 3.00 106 C is 12.0 cm...Ch. 21 - ILW Two equally chained particles are held 3.2 ...Ch. 21 - In Fig. 21-23, three charged particles lie on an x...Ch. 21 - In Fig. 21-24, three identical conducting spheres...Ch. 21 - SSM WWW Two identical conducting spheres, fixed in...Ch. 21 - GO In Fig. 21-25, four particles form a square....Ch. 21 - ILW In Fig. 21-25, the particles have charges q1 =...Ch. 21 - Two particles are fixed on an x axis. Particle 1...Ch. 21 - GO In Fig. 21-26, particle 1 of charge l.0 C and...Ch. 21 - Three particles are fixed on an x axis. Particle 1...Ch. 21 - GO The charges and coordinates of two charged...Ch. 21 - GO In Fig. 21-27a, particle l of charge q1 and...Ch. 21 - In Fig.21-28a, particles 1 and 2 have charge 20.0...Ch. 21 - In Fig. 21-29a, three positively charged particles...Ch. 21 - SSM WWW In Fig. 21-26, particle 1 of charge q and...Ch. 21 - GO Figure 21-30a shows an arrangement of three...Ch. 21 - GO A nonconducting spherical shell, with an inner...Ch. 21 - GO Figure 21-31 shows an arrangement of four...Ch. 21 - GO In Fig. 21-32, particles 1 and 2 of charge q1 =...Ch. 21 - Two tiny, spherical water drops, with identical...Ch. 21 - ILW How many electrons would have to be removed...Ch. 21 - Prob. 26PCh. 21 - SSM The magnitude of the electrostatic force...Ch. 21 - A current of 0.300 A through your chest can send...Ch. 21 - GO In Fig. 21-33, particles 2 and 4, of charge e,...Ch. 21 - In Fig. 21-26, particles 1 and 2 are fixed in...Ch. 21 - ILW Earths atmosphere is constantly bombarded by...Ch. 21 - GO Figure 21-34a shows charged particles 1 and 2...Ch. 21 - Calculate the number of coulombs of positive...Ch. 21 - GO Figure 21-35 shows electrons 1 and 2 on an x...Ch. 21 - SSM In crystals of the salt cesium chloride,...Ch. 21 - Electrons and positrons are produced by the...Ch. 21 - Prob. 37PCh. 21 - GO Figure 21-37 shows four identical conducting...Ch. 21 - SSM In Fig. 21-38, particle 1 of charge 4e is...Ch. 21 - In Fig, 21-23, particles 1 and 2 are fixed in...Ch. 21 - a What equal positive charges would have to be...Ch. 21 - In Fig. 21-39, two tiny conducting balls of...Ch. 21 - a Explain what happens to the balls of Problem 42...Ch. 21 - SSM How far apart must two protons be if the...Ch. 21 - How many megacoulombs of positive charge are in...Ch. 21 - In Fig. 21-40, four particles are fixed along an x...Ch. 21 - GO Point charges of 6.0 C and 4.0 C are placed on...Ch. 21 - In Fig. 21-41, three identical conducting spheres...Ch. 21 - A neutron consists of ore up quark of charge 2e/3...Ch. 21 - Figure 21-42 shows a long, nonconducting, massless...Ch. 21 - A charged nonconducting rod, with a length of 2.00...Ch. 21 - A particle of charge Q is Fixed at the origin of...Ch. 21 - What would be the magnitude of the electrostatic...Ch. 21 - A charge of 6.0 C is to be split into two parts...Ch. 21 - Of the charge Q on a tiny sphere, a fraction is...Ch. 21 - If a cat repeatedly rubs against your cotton...Ch. 21 - We know that the negative charge on the electron...Ch. 21 - In Fig, 21-26, particle 1 of charge 80.0C and...Ch. 21 - What is the total charge in coulombs of 75.0 kg of...Ch. 21 - GO In Fig. 21-43, six charged particles surround...Ch. 21 - Three charged particles form a triangle: particle...Ch. 21 - SSM In Fig. 21-44, what are the a magnitude and b...Ch. 21 - Two point charges of 30 nC and 40 nC are held...Ch. 21 - Two small, positively charged spheres have a...Ch. 21 - The initial charges on the three identical metal...Ch. 21 - An electron is in a vacuum near Earths surface and...Ch. 21 - SSM In Fig. 21-26, particle 1 of charge 5.00q and...Ch. 21 - Two engineering students, John with a mass of 90...Ch. 21 - In the radioactive decay of Eq. 21-13, a 238U...Ch. 21 - In Fig. 21-25, four particles form a square. The...Ch. 21 - In a spherical metal shell of radius R, an...Ch. 21 - An electron is projected with an initial speed vl...Ch. 21 - In an early model of the hydrogen atom the Bohr...Ch. 21 - A100 W lamp has a steady current of 0.83 A in its...Ch. 21 - The charges of an electron and a positron are e...
Additional Science Textbook Solutions
Find more solutions based on key concepts
DRAW IT Each female of a particular fish species produces millions of eggs per year. Draw and label the most l...
Campbell Biology (11th Edition)
18. SCIENTIFIC THINKING By measuring the fossil remains of Homo floresiensis, scientists have estimated its wei...
Campbell Biology: Concepts & Connections (9th Edition)
1.6 Read the labels on products used to wash your dishes. What are the names of some chemicals contained in tho...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
18. A 1.0 kg block is attached to a spring with spring constant 16 N/m. While the block is sitting at rest, a s...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Practice Exercise 1
Which of the following is the correct description of the inside of a grapefruit?
It is a p...
Chemistry: The Central Science (14th Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic. a. One lilac species lives o...
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two particles with charges q1 and q2 are separated by a distance d, and each exerts an electric force on the other with magnitude FE. a. In terms of these quantities, what separation distance would cause the magnitude of the electric force to be halved? b. In terms of these quantities, what separation distance would cause the magnitude of the electric force to be doubled?arrow_forward(a) A 1μC charge is at the center of the square shown below. How much external work is needed to move it to the corner of the square (assuming it is initially and finally at rest)? -5 μC 2 cm + 2 με 2 cm 1 μC - 10 μC (b) If the total energy of a system is negative, it is called a bound system. Otherwise, it is an unbound system. When the 1μC charge is at the corner of the square, is the system bound or unbound? (c) Suppose the four charges on the corners of the square are no longer fixed and are free to move. What will be the final kinetic energy of the luC charge?arrow_forwardThe water molecule's dipole moment is 6.17×10-30C⋅m. What would be the separation distance if the molecule consisted of charges ±e? (The effective charge is actually less because H and O atoms share the electrons.) Express answer with appropriate units.arrow_forward
- Problem 12: A uniformly charged rod of length L = 1.4 m lies along the x-axis with its right end at the origin. The rod has a total charge of Q = 8.2 μC. A point P is located on the x-axis a distance a = 1.8 m to the right of the origin. Part (a) Consider a thin slice of the rod of thickness dx located a distance x away from the origin. What is the direction of the electric field at point P due to the charge on this thin slice of the rod? Part (b) Write an equation for the electric field dE at point P due to the thin slide of the rod dx. Give your answers in terms of the variables Q, L, x, a, dx, and the Coulomb constant, k. Notice that the coordinate x will be less than zero over the length of the rod. Part (c) Integrate the electric field contributions from each slice over the length of the rod to write an equation for the net electric field E at point P. Part (d) Calculate the magnitude of the electric field E in kilonewtons per coulomb (kN/C) at point P due to the charged…arrow_forwardThree point charges at q1 x = 0, q2 at x = 5 cm, and q3 at x = 3 cm. Find the ratio of q1:q2 if q3 is at equilibriumarrow_forwardTwo identical beads each have a mass m and charge q. When placed in a hemispherical bowl of radius R with frictionless, nonconducting walls, the beads move, and at equilibrium, they are a distance d apart. Determine the charge q on each bead in terms of m, g,R,d aand ke. [Hint: you need to draw free body diagram for the beads and consider forces like normal force, weight and electric force]arrow_forward
- Problem 5: A thin rod of length L = 1.9 m lies along the positive y-axis with one end at the origin. The rod carries a uniformly distributed charge of Q1 = 5.2 µC. A point charge Q2 = 10.4 uC is located on the positive x-axis a distance a = 0.45 m from the origin. Refer to the figure. dy y X a Part (a) Consider a thin slice of the rod of thickness dy located a distance y away from the origin. What is the direction of the force on the point charge due to the charge on this thin slice? MultipleChoice : 1) Along the positive x-axis 2) Above the negative x-axis 3) Below the positive x-axis 4) Not enough information to determine 5) There is no force between the point charge and the slice of the rod 6) Above the positive x-axis 7) Below the negative x-axis Part (b) Choose the correct equation for x-component of the force, dFx, on the point charge due to the thin slice of the rod. SchematicChoice : kQ1Q2ady Q1Q2ady kQ,Q2ady dF dF, = L(a² + y²) dFx 3 3 L(a² + y²)ž L(a² + y²)ž kQ1Q2ydy kQ,Qzydy…arrow_forwardA very small sphere with positive charge q=+ 5.00 μC is released from rest at a point 1.70 cm from a very long line of uniform linear charge density λ=+ 2.00 μC/m . What is the kinetic energy of the sphere when it is 3.90 cm from the line of charge if the only force on it is the force exerted by the line of charge? Express your answer with the appropriate units. K = ?arrow_forward(a) A small amber bead with a mass of 14.4 g and a charge of -0.746 µC is suspended equilibrium above the center of a large, horizontal sheet of glass that has a uniform charge density on its surface. Find the charge per unit area on the glass sheet (In pc/m²), µC/m² (b) What If? What are the magnitude and direction of the acceleration of the piece of amber if Its charge is doubled? (Enter the magnitude in m/s².) magnitude m/s² direction Need Help? ---Solect--- Road It Oarrow_forward
- (a) Figure (a) shows a nonconducting rod of length L = 9.00 cm and uniform linear charge density λ = +7.57 pC/m. Take V = 0 at infinity. What is V at point P at distance d = 5.20 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude 7.57 pC/m. With V = 0 at infinity, what is V at P? (a) Number i (b) Number i ·+· -L/2 (a) Units Units L/2 +‡ ‡ ‡+3= L/2 .Р (b) L/2arrow_forwardA spherical capacitor is composed of two concentric conducting spheres, one of radius a and the other of radius c (c > a). In addition, between the two conductors there is a spherical shell of dielectric material (relative permittivity/relative dielectric constant ) with inner radius b (c > b > a) and outer radius c. The charge on the inner conductor is +Q. The charge on the outer conductor is -Q. (a) Make a sketch of the situation, indicating the relevant dimensions. (b) Determine the magnitude of the electric field E at radius r for a < r < b. (c) Determine the magnitude of the electric field E at radius r for b < r < c. (d) What is the (induced) surface charge density on the inner surface of the dielectric. (e) Sketch the radial component of the electric field versus r . (f) Sketch the electrostatic potential versus r . (g)Calculate the potential difference between the conductor at r = a and that at r = c. (h) What is the capacitance of this capacitor?arrow_forward(a) Figure (a) shows a nonconducting rod of length L = 8.00 cm and uniform linear charge density λ = +1.21 pc/m. Take V = 0 at infinity. What is V at point P at distance d = 7.40 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude 1.21 pc/m. With V = 0 at infinity, what is V at P? 1/2 L/2- L/2 1/2 - (a) (b)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY