Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 21, Problem 26P
To determine
To calculate:
the magnitude of the electrostatic force between a singly charged Na ion and an adjacent singly charged Cl ion in a NaCl salt crystal with a known distance between them.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An object of mass 5 × 10-6 g is placed over a thin positively charged sheet of surface density of charge σ = 4.0 × 10-6C/m2 (figure shown below). Estimate the charge that should be given to this object so that upon release it will not fall down. Calculate the number of electrons that is to be removed to give this charge. How much mass loss is caused by this removal of electrons?
The figure shows the interface between two linear dielectrics, silicon and silicon
dioxide with relative permittivities 12 and 4 respectively. The interfaces of the two
materials are perpendicular to the 2 as shown in the figure, and can contain an
interface charge density, p. An electric field in silicon dioxide (region 1) is given as
: 4î + 6k kV/m. D₁ and D₂ are the corresponding electric displacements
in regions 1 and 2 respectively. The questions on this page are all based on this
E₁
=
system.
Р
E2, D2,
E₁, D₁
Region 2: Si
Er2 = 12
Er1 = 4
Region 1: SiO₂
N
12,
X
Flying insects such as bees may accumulate a small positive electric charge as they fly. In one experiment, the mean electric charge of 50 bees was measured to be ++(30 ±± 5) pCpC per bee. Researchers also observed the electrical properties of a plant consisting of a flower atop a long stem. The charge on the stem was measured as a positively charged bee approached, landed, and flew away. Plants are normally electrically neutral, so the measured net electric charge on the stem was zero when the bee was very far away. As the bee approached the flower, a small net positive charge was detected in the stem, even before the bee landed. Once the bee landed, the whole plant became positively charged, and this positive charge remained on the plant after the bee flew away. By creating artificial flowers with various charge values, experimenters found that bees can distinguish between charged and uncharged flowers and may use the positive electric charge left by a previous bee as a cue…
Chapter 21 Solutions
Fundamentals of Physics Extended
Ch. 21 - Figure 21-11 shows 1 four situations in which five...Ch. 21 - Figure 21-12 shows three pairs of identical...Ch. 21 - Figure 21-13 shows four situations in which...Ch. 21 - Figure 21-14 shows two charged particles on an...Ch. 21 - In Fig. 21-15, a central particle of charge q is...Ch. 21 - A positively charged ball is brought close to an...Ch. 21 - Figure 21-16 shows three situations involving a...Ch. 21 - Figure 21-17 shows four arrangements of charged...Ch. 21 - Figure 21-18 shows four situations in which...Ch. 21 - In Fig. 21-19, a central particle of charge 2q is...
Ch. 21 - Figure 21-20 shows three identical conducting...Ch. 21 - Figure 21-21 shows four situations in which a...Ch. 21 - SSM ILW Of the charge Q initially on a tiny...Ch. 21 - Identical isolated conducting spheres 1 and 2 have...Ch. 21 - SSM What must be the distance between point charge...Ch. 21 - In the return stroke of a typical lightning bolt,...Ch. 21 - A particle of charge 3.00 106 C is 12.0 cm...Ch. 21 - ILW Two equally chained particles are held 3.2 ...Ch. 21 - In Fig. 21-23, three charged particles lie on an x...Ch. 21 - In Fig. 21-24, three identical conducting spheres...Ch. 21 - SSM WWW Two identical conducting spheres, fixed in...Ch. 21 - GO In Fig. 21-25, four particles form a square....Ch. 21 - ILW In Fig. 21-25, the particles have charges q1 =...Ch. 21 - Two particles are fixed on an x axis. Particle 1...Ch. 21 - GO In Fig. 21-26, particle 1 of charge l.0 C and...Ch. 21 - Three particles are fixed on an x axis. Particle 1...Ch. 21 - GO The charges and coordinates of two charged...Ch. 21 - GO In Fig. 21-27a, particle l of charge q1 and...Ch. 21 - In Fig.21-28a, particles 1 and 2 have charge 20.0...Ch. 21 - In Fig. 21-29a, three positively charged particles...Ch. 21 - SSM WWW In Fig. 21-26, particle 1 of charge q and...Ch. 21 - GO Figure 21-30a shows an arrangement of three...Ch. 21 - GO A nonconducting spherical shell, with an inner...Ch. 21 - GO Figure 21-31 shows an arrangement of four...Ch. 21 - GO In Fig. 21-32, particles 1 and 2 of charge q1 =...Ch. 21 - Two tiny, spherical water drops, with identical...Ch. 21 - ILW How many electrons would have to be removed...Ch. 21 - Prob. 26PCh. 21 - SSM The magnitude of the electrostatic force...Ch. 21 - A current of 0.300 A through your chest can send...Ch. 21 - GO In Fig. 21-33, particles 2 and 4, of charge e,...Ch. 21 - In Fig. 21-26, particles 1 and 2 are fixed in...Ch. 21 - ILW Earths atmosphere is constantly bombarded by...Ch. 21 - GO Figure 21-34a shows charged particles 1 and 2...Ch. 21 - Calculate the number of coulombs of positive...Ch. 21 - GO Figure 21-35 shows electrons 1 and 2 on an x...Ch. 21 - SSM In crystals of the salt cesium chloride,...Ch. 21 - Electrons and positrons are produced by the...Ch. 21 - Prob. 37PCh. 21 - GO Figure 21-37 shows four identical conducting...Ch. 21 - SSM In Fig. 21-38, particle 1 of charge 4e is...Ch. 21 - In Fig, 21-23, particles 1 and 2 are fixed in...Ch. 21 - a What equal positive charges would have to be...Ch. 21 - In Fig. 21-39, two tiny conducting balls of...Ch. 21 - a Explain what happens to the balls of Problem 42...Ch. 21 - SSM How far apart must two protons be if the...Ch. 21 - How many megacoulombs of positive charge are in...Ch. 21 - In Fig. 21-40, four particles are fixed along an x...Ch. 21 - GO Point charges of 6.0 C and 4.0 C are placed on...Ch. 21 - In Fig. 21-41, three identical conducting spheres...Ch. 21 - A neutron consists of ore up quark of charge 2e/3...Ch. 21 - Figure 21-42 shows a long, nonconducting, massless...Ch. 21 - A charged nonconducting rod, with a length of 2.00...Ch. 21 - A particle of charge Q is Fixed at the origin of...Ch. 21 - What would be the magnitude of the electrostatic...Ch. 21 - A charge of 6.0 C is to be split into two parts...Ch. 21 - Of the charge Q on a tiny sphere, a fraction is...Ch. 21 - If a cat repeatedly rubs against your cotton...Ch. 21 - We know that the negative charge on the electron...Ch. 21 - In Fig, 21-26, particle 1 of charge 80.0C and...Ch. 21 - What is the total charge in coulombs of 75.0 kg of...Ch. 21 - GO In Fig. 21-43, six charged particles surround...Ch. 21 - Three charged particles form a triangle: particle...Ch. 21 - SSM In Fig. 21-44, what are the a magnitude and b...Ch. 21 - Two point charges of 30 nC and 40 nC are held...Ch. 21 - Two small, positively charged spheres have a...Ch. 21 - The initial charges on the three identical metal...Ch. 21 - An electron is in a vacuum near Earths surface and...Ch. 21 - SSM In Fig. 21-26, particle 1 of charge 5.00q and...Ch. 21 - Two engineering students, John with a mass of 90...Ch. 21 - In the radioactive decay of Eq. 21-13, a 238U...Ch. 21 - In Fig. 21-25, four particles form a square. The...Ch. 21 - In a spherical metal shell of radius R, an...Ch. 21 - An electron is projected with an initial speed vl...Ch. 21 - In an early model of the hydrogen atom the Bohr...Ch. 21 - A100 W lamp has a steady current of 0.83 A in its...Ch. 21 - The charges of an electron and a positron are e...
Knowledge Booster
Similar questions
- An atom of an element consists one proton and an electron. The charge of a proton is 1.6020x10-19 C while the charge of an electron is -1.602x10-19 C. If the electrostatic force between the charged particles is -7.2641 x10-8 N, compute for the most probable distance between the proton and electron of the atom.arrow_forwardIn bronze, a singly ionized copper atom and a doubly lonized tin atom are separated by a distance R-24.1 nm. Both are positively charged and so should repel, but they are kept in place by their attraction to an electron in-between the two ions. As a result of the combination of electrostatic forces between the ions and the electron, the three particles are kept in equilibrium, as shown in the figure below. copper ion Kr electron tin ion ++ R In this configuration, what is the magnitude of the attractive force (in pN- yes, the force is that small!) exerted on the copper ion by the electron?arrow_forwardA paisa coin is made up of Al-Mg alloy and weighs 0.75 g. It has a square shape and its diagonal measures 17 mm. It is electrically neutral and contains equal amounts of positive and negative charges. Treating the paisa coins made up of only Al, find the magnitude of an equal number of positive and negative charges.arrow_forward
- An isolated water molecule is modeled as two point charges ±0.700e separated by 0.0480 nm. Its rotational inertia is 2.93 × 10-47 kg-m2 about the axis shown in the figure below. The molecule is in a uniform electric field of magnitude 837 N/C. What is the maximum possible torque on the molecule due to the electric field? +q Axis of rotation |N·marrow_forwardTwo chloride ions and two sodium ions are in water, the "effective charge" on the chloride ions (CI) is -2.00 × 10-21 C and that of the sodium ions (Na) is +2.00 x 10-21 C. (The effective charge is a way to account for the partial shielding due to nearby water molecules.) Assume that all four ions are coplanar. 45.0% L. where a 0.280 nm, b=0.740 nm, and c= 0.670 nm. What is the direction of electric force on the chloride ion in the lower right-hand corner in the diagram? Enter the angle in degrees where positive indicates above the negative x-axis and negative indicates below the positive x-axis.arrow_forwardTwo small spheres separated by a distance equal to 20.0 cm have equal charges. How many excess electrons must be present in each sphere so that the modulus of the repulsion force between them is equal to 3.33x10-21N?arrow_forward
- A positive electric charge of 3 Coulombs is to be added to the combination of 6.25x10^18 e− and 3.125x10^19 p+. What will be the net charge? Answer in whole number form.arrow_forwardSuppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rh has charge -Q. The electric field E at a radial distancer from the central axis is given by the function: E = ae-r/ao + B/r + bo where alpha (a), beta (B), ao and bo are constants. Find an expression for its capacitance. First, let us derive the potential difference Vab between the two conductors. The potential difference is related to the electric field by: Vab = Edr = - Edr Calculating the antiderivative or indefinite integral, Vab = (-aaoe-r/ao + B + bo By definition, the capacitance C is related to the charge and potential difference by: C= Q I Vabarrow_forwardSuppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rp has charge -Q. The electric field E at a radial distance r from the central axis is given by the function: E = aer/ao + B/r + bo %| where alpha (a), beta (B), ao and bo are constants. Find an expression for its capacitance. First, let us derive the potential difference Vab between the two conductors. The potential difference is related to the electric field by: Va Edr= Edr Calculating the antiderivative or indefinite integral, Vab = (-aaoe-r/ao + B + bo By definition, the capacitance C is related to the charge and potential difference by: C = Evaluating with the upper and lower limits of integration for Vab, then simplifying: C = Q/( (e-"b/ao - era/ao) + B In( ) + bo ( ))arrow_forward
- Answer..arrow_forwardSuppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rp has charge -Q. The electric field E at a radial distance r from the central axis is given by the function: E = ae-r/ao + B/r + bo where alpha (a), beta (B), ao and bo are constants. Find an expression for its capacitance. First, let us derive the potential difference Vab between the two conductors. The potential difference is related to the electric field by: ['´e Vob = Edr= - Edr Calculating the antiderivative or indefinite integral, Vab = (-aaoe¯r7ao + B + bo By definition, the capacitance C is related to the charge and potential difference by: C = Evaluating with the upper and lower limits of integration for Vab, then simplifying: C = Q / ( (erb/ao - eralao) + B In( ) + bo ( ))arrow_forward(Figure 1) shows five electric charges. Four charges with the magnitude of the charge 2.0 nC form a square with the size a = 1.5 cm . Positive charge with the magnitude of q = 2.5 nC is placed in the center of the square. What is the direction of the force on the 2.5 nC charge in the middle of the figure due to the four other charges? Express your answer in degrees to two significant figures.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning