Concept explainers
Figure 21-42 shows a long, nonconducting, massless rod of length L, pivoted at its center and balanced with a block of weight W at a distance x from the left end. At the left and right ends of the rod are attached small
Figure 21-42 Problem 50.
Want to see the full answer?
Check out a sample textbook solutionChapter 21 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
Anatomy & Physiology (6th Edition)
Cosmic Perspective Fundamentals
Microbiology with Diseases by Body System (5th Edition)
Chemistry (7th Edition)
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
- A water molecule is made up of two hydrogen atoms and one oxygen atom, with a total of 10 electrons and 10 protons. The molecule is modeled as a dipole with an effective separation d = 3.9 1012 m between its positive and negative charges. What is the magnitude of the water molecules dipole moment?arrow_forwardThree identical conducting spheres are fixed along a single line. The middle sphere is equidistant from the other two so that the center-to-center distance between the middle sphere and either of the other two is 0.125 m. Initially, only the middle sphere is charged, with qmiddle = +35.6 nC. The middle sphere is later connected by a conducting wire to the sphere on the left. The wire is removed and then used to connect the middle sphere to the sphere on the right. The wire is again removed. a. C What is the charge on each sphere? b. C Which sphere experiences the greatest electrostatic force? c. N What is the magnitude of that force?arrow_forwardA 1.75-nC charged particle located at the origin is separated by a distance of 0.0825 m from a 2.88-nC charged particle located farther along the positive x axis. If the 1.75-nC particle is kept fixed at the origin, where along the positive x axis should the 2.88-nC particle be located so that the magnitude of the electrostatic force it experiences is twice as great as it was in Problem 27?arrow_forward
- A metal sphere with charge +8.00 nC is attached to the left-hand end of a nonconducting rod of length L = 2.00 m. A second sphere with charge +2.00 nC is fixed to the right-hand end of the rod (Fig. P23.53). At what position d along the rod can a charged bead be placed for the bead to be in equilibrium? FIGURE P23.53arrow_forwardIs it possible for a conducting sphere of radius 0.10 m to hold a charge of 4.0 C in air? The minimum field required to break down air and turn it into a conductor is 3.0 106 N/C.arrow_forwardAn infinite line of positive charge lies along the y axis, with charge density = 2.00 C/m. A dipole is placed with its center along the x axis at x = 25.0 cm. The dipole consists of two charges 10.0 C separated by 2.00 cm. The axis of the dipole makes an angle of 35.0 with the x axis, and the positive charge is farther from the line of charge than the negative charge. Find the net force exerted on the dipole.arrow_forward
- Two red blood cells each have mass of 9.05 × 10-14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. One cell carries -2.30 pC and the other -2.60 pC, and each cell can be modeled as a sphere 3.75 x 10-° m in radius. If the red blood cells start very far apart and move directly toward each other with the same speed, what initial speed would each need so that they get close enough to just barely touch? Assume that there is no viscous drag from any of the surrounding liquid. initial speed: m/s What is the maximum acceleration of the cells as they move toward each other and just barely touch? maximum acceleration: m/s?arrow_forwardTwo red blood cells each have a mass of 9.05×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. One cell carries −3.00 pC and the other −2.60 pC, and each cell can be modeled as a sphere 3.75×10−6 m in radius. If the red blood cells start very far apart and move directly toward each other with the same speed, what initial speed would each need so that they get close enough to just barely touch? Assume that there is no viscous drag from any of the surrounding liquid. What is the maximum acceleration of the cells as they move toward each other and just barely touch?arrow_forwardThree charges are placed at the vertices of an equilateral triangle of side equal to 10 cm. The charges are +2.0 μC, 3.0 μC, and -8.0 μC. Solve for the magnitude of the force acting on the -8.0 μC due to the presence of the other two chargesarrow_forward
- Two red blood cells each have a mass of 9.05×10-14 and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. One cell carries -2.70 pC and the other -3.30 pC, and each cell can be modeled as a sphere 3.75x10-6 m in radius. If the red blood cells start very far apart and move directly toward each other with the same speed, what initial speed would each need so that they get close enough to just barely touch? Assume that there is no viscous drag from any of the surrounding liquid. a) initial speed: ? m/s What is the maximum acceleration of the cells as they move toward each other and just barely touch? b) maximum acceleration: ? m/s²arrow_forwardTwo red blood cells each have a mass of 9.05 x 10-¹4 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. One cell carries -3.00 pC and the other -2.90 pC, and each cell can be modeled as a sphere 3.75 x 10-6 m in radius. If the red blood cells start very far apart and move directly toward each other with the same speed, what initial speed would each need so that they get close enough to just barely touch? Assume that there is no viscous drag from any of the surrounding liquid. initial speed: What is the maximum acceleration of the cells as they move toward each other and just barely touch? maximum acceleration: m/s m/s²arrow_forwardA system consists of two positive point charges, q1 and q2>q1. The total charge of the system is 65.0 μC , and each charge experiences electrostatic force of magnitude 87.0 N when the separation between them is 0.270 m.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College