Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 15P
GO The charges and coordinates of two charged particles held fixed in an xy plane are q1 = +3.0 µC, x1 = 3.5 cm. y1 = 0.50 cm, and q2 = −4.0 µC, x2 = −2.0 cm, y2 = 1.5 cm. Find the (a) magnitude and (b) direction of the electrostatic force on particle 2 due to particle 1. At what (c) x and (d) y coordinates should a third particle of charge q3 = +4.0 µC be placed such that the net electrostatic force on particle 2 due to particles 1 and 3 is zero?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In Fig., what are the (a) magnitude and (b) direction of the net electrostatic force on
particle 4 due to the other three particles? All four particles are fixed in the xy plane, and
q1 = -3.20 x 10-19 C, q2 = +3.20 x 10-19 C, q3 = + 6.40 x 10-19 C, q4 = +3.20 x 1019 C, qı =
35.0°, di = 3.00 cm, and d2 = d3 = 2.00 cm.
2
d2
dz
3
Three charged particles are placed at the corners of an equilateral triangle of side 1.20 m (see (Figure 1)). The charges are Q1=7.4μC, Q2=−8.2μC, and Q3=5.6μC .
a ) Calculate the magnitude of the net force on particle 1 due to the other two
The figure shows an arrangement of four charged particles, with angle 0 = 31.0 ° and distance d = 3.00 cm. Particle 2 has charge
92 = 6.40 × 10-19 C; particles 3 and 4 have charges q3 = 94 = -1.60 × 10-19 C. (a) What is the distance D between the origin and particle
2 if the net electrostatic force on particle 1 due to the other particles is zero? (b) If particles 3 and 4 were moved closer to the x axis
%3D
%3D
but maintained their symmetry about that axis, would the required value of D be greater than, less than, or the same as in part (a)?
3
D
4
Chapter 21 Solutions
Fundamentals of Physics Extended
Ch. 21 - Figure 21-11 shows 1 four situations in which five...Ch. 21 - Figure 21-12 shows three pairs of identical...Ch. 21 - Figure 21-13 shows four situations in which...Ch. 21 - Figure 21-14 shows two charged particles on an...Ch. 21 - In Fig. 21-15, a central particle of charge q is...Ch. 21 - A positively charged ball is brought close to an...Ch. 21 - Figure 21-16 shows three situations involving a...Ch. 21 - Figure 21-17 shows four arrangements of charged...Ch. 21 - Figure 21-18 shows four situations in which...Ch. 21 - In Fig. 21-19, a central particle of charge 2q is...
Ch. 21 - Figure 21-20 shows three identical conducting...Ch. 21 - Figure 21-21 shows four situations in which a...Ch. 21 - SSM ILW Of the charge Q initially on a tiny...Ch. 21 - Identical isolated conducting spheres 1 and 2 have...Ch. 21 - SSM What must be the distance between point charge...Ch. 21 - In the return stroke of a typical lightning bolt,...Ch. 21 - A particle of charge 3.00 106 C is 12.0 cm...Ch. 21 - ILW Two equally chained particles are held 3.2 ...Ch. 21 - In Fig. 21-23, three charged particles lie on an x...Ch. 21 - In Fig. 21-24, three identical conducting spheres...Ch. 21 - SSM WWW Two identical conducting spheres, fixed in...Ch. 21 - GO In Fig. 21-25, four particles form a square....Ch. 21 - ILW In Fig. 21-25, the particles have charges q1 =...Ch. 21 - Two particles are fixed on an x axis. Particle 1...Ch. 21 - GO In Fig. 21-26, particle 1 of charge l.0 C and...Ch. 21 - Three particles are fixed on an x axis. Particle 1...Ch. 21 - GO The charges and coordinates of two charged...Ch. 21 - GO In Fig. 21-27a, particle l of charge q1 and...Ch. 21 - In Fig.21-28a, particles 1 and 2 have charge 20.0...Ch. 21 - In Fig. 21-29a, three positively charged particles...Ch. 21 - SSM WWW In Fig. 21-26, particle 1 of charge q and...Ch. 21 - GO Figure 21-30a shows an arrangement of three...Ch. 21 - GO A nonconducting spherical shell, with an inner...Ch. 21 - GO Figure 21-31 shows an arrangement of four...Ch. 21 - GO In Fig. 21-32, particles 1 and 2 of charge q1 =...Ch. 21 - Two tiny, spherical water drops, with identical...Ch. 21 - ILW How many electrons would have to be removed...Ch. 21 - Prob. 26PCh. 21 - SSM The magnitude of the electrostatic force...Ch. 21 - A current of 0.300 A through your chest can send...Ch. 21 - GO In Fig. 21-33, particles 2 and 4, of charge e,...Ch. 21 - In Fig. 21-26, particles 1 and 2 are fixed in...Ch. 21 - ILW Earths atmosphere is constantly bombarded by...Ch. 21 - GO Figure 21-34a shows charged particles 1 and 2...Ch. 21 - Calculate the number of coulombs of positive...Ch. 21 - GO Figure 21-35 shows electrons 1 and 2 on an x...Ch. 21 - SSM In crystals of the salt cesium chloride,...Ch. 21 - Electrons and positrons are produced by the...Ch. 21 - Prob. 37PCh. 21 - GO Figure 21-37 shows four identical conducting...Ch. 21 - SSM In Fig. 21-38, particle 1 of charge 4e is...Ch. 21 - In Fig, 21-23, particles 1 and 2 are fixed in...Ch. 21 - a What equal positive charges would have to be...Ch. 21 - In Fig. 21-39, two tiny conducting balls of...Ch. 21 - a Explain what happens to the balls of Problem 42...Ch. 21 - SSM How far apart must two protons be if the...Ch. 21 - How many megacoulombs of positive charge are in...Ch. 21 - In Fig. 21-40, four particles are fixed along an x...Ch. 21 - GO Point charges of 6.0 C and 4.0 C are placed on...Ch. 21 - In Fig. 21-41, three identical conducting spheres...Ch. 21 - A neutron consists of ore up quark of charge 2e/3...Ch. 21 - Figure 21-42 shows a long, nonconducting, massless...Ch. 21 - A charged nonconducting rod, with a length of 2.00...Ch. 21 - A particle of charge Q is Fixed at the origin of...Ch. 21 - What would be the magnitude of the electrostatic...Ch. 21 - A charge of 6.0 C is to be split into two parts...Ch. 21 - Of the charge Q on a tiny sphere, a fraction is...Ch. 21 - If a cat repeatedly rubs against your cotton...Ch. 21 - We know that the negative charge on the electron...Ch. 21 - In Fig, 21-26, particle 1 of charge 80.0C and...Ch. 21 - What is the total charge in coulombs of 75.0 kg of...Ch. 21 - GO In Fig. 21-43, six charged particles surround...Ch. 21 - Three charged particles form a triangle: particle...Ch. 21 - SSM In Fig. 21-44, what are the a magnitude and b...Ch. 21 - Two point charges of 30 nC and 40 nC are held...Ch. 21 - Two small, positively charged spheres have a...Ch. 21 - The initial charges on the three identical metal...Ch. 21 - An electron is in a vacuum near Earths surface and...Ch. 21 - SSM In Fig. 21-26, particle 1 of charge 5.00q and...Ch. 21 - Two engineering students, John with a mass of 90...Ch. 21 - In the radioactive decay of Eq. 21-13, a 238U...Ch. 21 - In Fig. 21-25, four particles form a square. The...Ch. 21 - In a spherical metal shell of radius R, an...Ch. 21 - An electron is projected with an initial speed vl...Ch. 21 - In an early model of the hydrogen atom the Bohr...Ch. 21 - A100 W lamp has a steady current of 0.83 A in its...Ch. 21 - The charges of an electron and a positron are e...
Additional Science Textbook Solutions
Find more solutions based on key concepts
8. A human maintaining a vegan diet (containing no animal products) would be a:
a. producer
b. primary consume...
Human Biology: Concepts and Current Issues (8th Edition)
Why are BSL-4 suits pressurized? Why not just wear tough regular suits?
Microbiology with Diseases by Body System (5th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Using the pKa values listed in Table 15.1, predict the products of the following reactions:
Organic Chemistry (8th Edition)
Why are the top predators in food chains most severely affected by pesticides such as DDT?
Campbell Essential Biology with Physiology (5th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Charges A, B, and C are arranged in the xy plane with qA = 5.60 C, qB = 4.00 C, and qC = 2.30 /C (Fig. P23.43). What are the magnitude and direction of the electrostatic force on charge B? Figure P23.43arrow_forwardCharges of 3.00 nC, 2.00 nC, 7.00 nC, and 1.00 nC are contained inside a rectangular box with length 1.00 m, width 2.00 m, and height 2.50 m. Outside the box are charges of 1.00 nC and 4.00 nC. What is the electric flux through the surface of the box? (a) 0 (b) 5.64 102 N m2/C (c) 1.47 103 N m2/C (d) 1.47 103 N m2/C (e) 5.64 102 N m2/Carrow_forwardA particle with charge q on the negative x axis and a second particle with charge 2q on the positive x axis are each a distance d from the origin. Where should a third particle with charge 3q be placed so that the magnitude of the electric field at the origin is zero?arrow_forward
- In Figure P24.49, a charged particle of mass m = 4.00 g and charge q = 0.250 C is suspended in static equilibrium at the end of an insulating thread that hangs from a very long, charged, thin rod. The thread is 12.0 cm long and makes an angle of 35.0 with the vertical. Determine the linear charge density of the rod. FIGURE P24.49arrow_forwardWhy is the following situation impossible? A solid copper sphere of radius 15.0 cm is in electrostatic equilibrium and carries a charge of 40.0 nC. Figure P24.30 shows the magnitude of the electric field as a function of radial position r measured from the center of the sphere. Figure P24.30arrow_forwardEight small conducting spheres with identical charge q = 2.00 C are placed at the corners of a cube of side d = 0.500 m (Fig. P23.75). What is the total force on the sphere at the origin (sphere A) due to the other seven spheres? Figure P23.75arrow_forward
- Three charged particles form a triangle: particle 1 with charge Q1 = 80.0 nC is at xy coordinates (0, 3.00 mm), particle 2 with charge Q2 is at (0, -3.00 mm), and particle 3 with charge q = 18.0 nC is at (4.00 mm, 0). In unit-vector notation, what is the electrostatic force on particle 3 due to the other two particles if Q2 is equal to (a) 80.0 nC and (b) -80.0 nC?arrow_forwardThe figure shows an arrangement of four charged particles, with angle θ = 35.0 ˚ and distance d = 2.00 cm. Particle 2 has charge q2 = 6.40 × 10-19 C; particles 3 and 4 have charges q3 = q4 = -3.20 × 10-19 C. (a) What is the distance D between the origin and particle 2 if the net electrostatic force on particle 1 due to the other particles is zero? (b) If particles 3 and 4 were moved closer to the x axis but maintained their symmetry about that axis, would the required value of D be greater than, less than, or the same as in part (a)?arrow_forwardIn the figure what are the (a) magnitude and (b) direction of the net electrostatic force on particle 4 due to the other three particles? All four particles are fixed in the xy plane, and q₁ = - 3.20 x 10-19 C, q2 = + 3.20 x 10-19 C, q3 = + 6.40 x 10-19 C, 94 +3.20 x 10-1⁹ C,0₁ = 30.0 degrees, d₁ = 3.00 cm, and d2d3 = 2.00 cm.arrow_forward
- Fig. a, particles 1 and 2 have charge 20.0 mC each and are held at separation distance d =1.50 m. (a) What is the magnitude of the electrostatic force on particle 1 due to particle 2? In Fig. b, particle 3 of charge 20.0 mC is positioned so as to complete an equilateral triangle. (b) What is the magnitude of the net electrostatic force on particle 1 due to particles 2 and 3?arrow_forwardThe figure shows an arrangement of four charged particles, with angle 0 = 30.0° and distance d = 1.50 cm. Particle 2 has charge q2 = 8.00 × 10-¹⁹ C; particles 3 and 4 have charges 93 94 = -4.80 × 10-19 C. (a) What is the distance D between the origin and particle 2 if the net electrostatic force on particle 1 due to the other particles is zero? (b) If particles 3 and 4 were moved closer to the x axis but maintained their symmetry about that axis, would the required value of D be greater than, less than, or the same as in part (a)? 1 (a) Number i (b) less d 3 4 D 2 Unitsarrow_forwardProblem 1. An attractive force exists between two particles A and B with charges 2.062x10-4 C and -3.4518x10-4 C respectively. If particle B is positioned at coordinates (4cm,-2cm) from particle A (0,0), compute for the electrostatic force (both magnitude and direction) on the particle A due to particle B.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY