General Chemistry: Atoms First
General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
Question
Book Icon
Chapter 21, Problem 21.119CHP

(a)

Interpretation Introduction

Interpretation:

The given material MgO has to be classified as a metallic conductor or an n-type semiconductor or a p-type semiconductor and or an insulator.

Concept introduction:

Semiconductor: A material which can conduct electricity in range between a metal and an insulator is known as semiconductor.  Addition of small amount of impurities increases conductivity of semiconductor and the process is known as doping.  n-type and p-type are two types of doped semiconductors.

n-type: This is a  type of doped semiconductor in which many free electrons are present in conduction band.

p-type: This is a type of doped semiconductor in which holes are present in valance band.

Insulator: Insulators are one, in which electrons are filled in valence band with a vacant conduction band and they are parted away by band gap.

Conductor: Any material which can conduct electricity is known as conductor.  There will be no band gap in metallic conductor and electrons can easily travel.

General Chemistry: Atoms First, Chapter 21, Problem 21.119CHP , additional homework tip  1

Figure 1

h

(b)

Interpretation Introduction

Semiconductor: A material which can conduct electricity in range between a metal and an insulator is known as semiconductor.  Addition of small amount of impurities increases conductivity of semiconductor and the process is known as doping.  n-type and p-type are two types of doped semiconductors.

n-type: This is a  type of doped semiconductor in which many free electrons are present in conduction band.

p-type: This is a type of doped semiconductor in which holes are present in valance band.

Insulator: Insulators are one, in which electrons are filled in valence band with a vacant conduction band and they are parted away by band gap.

Conductor: Any material which can conduct electricity is known as conductor.  There will be no band gap in metallic conductor and electrons can easily travel.

General Chemistry: Atoms First, Chapter 21, Problem 21.119CHP , additional homework tip  2

Figure 1

(c)

Interpretation Introduction

Interpretation:

The given material white tin has to be classified as a metallic conductor or an n-type semiconductor or a p-type semiconductor and or an insulator.

Concept introduction:

Semiconductor: A material which can conduct electricity in range between a metal and an insulator is known as semiconductor.  Addition of small amount of impurities increases conductivity of semiconductor and the process is known as doping.  n-type and p-type are two types of doped semiconductors.

n-type: This is a  type of doped semiconductor in which many free electrons are present in conduction band.

p-type: This is a type of doped semiconductor in which holes are present in valance band.

Insulator: Insulators are one, in which electrons are filled in valence band with a vacant conduction band and they are parted away by band gap.

Conductor: Any material which can conduct electricity is known as conductor.  There will be no band gap in metallic conductor and electrons can easily travel.

General Chemistry: Atoms First, Chapter 21, Problem 21.119CHP , additional homework tip  3

Figure 1

(d)

Interpretation Introduction

Interpretation:

The given material germanium doped with gallium has to be classified as a metallic conductor or an n-type semiconductor or a p-type semiconductor and or an insulator.

Concept introduction:

Semiconductor: A material which can conduct electricity in range between a metal and an insulator is known as semiconductor.  Addition of small amount of impurities increases conductivity of semiconductor and the process is known as doping.  n-type and p-type are two types of doped semiconductors.

n-type: This is a  type of doped semiconductor in which many free electrons are present in conduction band.

p-type: This is a type of doped semiconductor in which holes are present in valance band.

Insulator: Insulators are one, in which electrons are filled in valence band with a vacant conduction band and they are parted away by band gap.

Conductor: Any material which can conduct electricity is known as conductor.  There will be no band gap in metallic conductor and electrons can easily travel.

General Chemistry: Atoms First, Chapter 21, Problem 21.119CHP , additional homework tip  4

Figure 1

(e)

Interpretation Introduction

Interpretation:

The given material stainless steel has to be classified as a metallic conductor or an n-type semiconductor or a p-type semiconductor and or an insulator.

Concept introduction:

Semiconductor: A material which can conduct electricity in range between a metal and an insulator is known as semiconductor.  Addition of small amount of impurities increases conductivity of semiconductor and the process is known as doping.  n-type and p-type are two types of doped semiconductors.

n-type: This is a  type of doped semiconductor in which many free electrons are present in conduction band.

p-type: This is a type of doped semiconductor in which holes are present in conduction band.

Insulator: Insulators are one, in which electrons are filled in valence band with a vacant conduction band and they are parted away by band gap.

Conductor: Any material which can conduct electricity is known as conductor.  There will be no band gap in metallic conductor and electrons can easily travel.

General Chemistry: Atoms First, Chapter 21, Problem 21.119CHP , additional homework tip  5

Figure 1

Blurred answer
Students have asked these similar questions
5. Propose a Synthesis for the molecule below. You may use any starting materials containing 6 carbons or less (reagents that aren't incorporated into the final molecule such as PhзP do not count towards this total, and the starting material can have whatever non-carbon functional groups you want), and any of the reactions you have learned so far in organic chemistry I, II, and III. Your final answer should show each step separately, with intermediates and conditions clearly drawn. H3C CH3
State the name and condensed formula of isooxazole obtained by reacting acetylacetone and hydroxylamine.
State the name and condensed formula of the isothiazole obtained by reacting acetylacetone and thiosemicarbazide.

Chapter 21 Solutions

General Chemistry: Atoms First

Ch. 21.8 - Prob. 21.11PCh. 21.9 - Prob. 21.12PCh. 21.9 - Prob. 21.13PCh. 21.9 - Prob. 21.14PCh. 21 - Prob. 21.15CPCh. 21 - Prob. 21.16CPCh. 21 - Prob. 21.17CPCh. 21 - Prob. 21.18CPCh. 21 - Prob. 21.19CPCh. 21 - Prob. 21.20CPCh. 21 - Prob. 21.21CPCh. 21 - Prob. 21.22SPCh. 21 - Prob. 21.23SPCh. 21 - Prob. 21.24SPCh. 21 - Prob. 21.25SPCh. 21 - Prob. 21.26SPCh. 21 - Prob. 21.27SPCh. 21 - Prob. 21.28SPCh. 21 - Prob. 21.29SPCh. 21 - Prob. 21.30SPCh. 21 - Prob. 21.31SPCh. 21 - Prob. 21.32SPCh. 21 - Prob. 21.33SPCh. 21 - Prob. 21.34SPCh. 21 - Prob. 21.35SPCh. 21 - Prob. 21.36SPCh. 21 - Prob. 21.37SPCh. 21 - Prob. 21.38SPCh. 21 - Prob. 21.39SPCh. 21 - Prob. 21.40SPCh. 21 - Prob. 21.41SPCh. 21 - Prob. 21.42SPCh. 21 - Prob. 21.43SPCh. 21 - Prob. 21.44SPCh. 21 - Prob. 21.45SPCh. 21 - Prob. 21.46SPCh. 21 - Prob. 21.47SPCh. 21 - Prob. 21.48SPCh. 21 - Prob. 21.49SPCh. 21 - Prob. 21.50SPCh. 21 - Prob. 21.51SPCh. 21 - Prob. 21.52SPCh. 21 - Prob. 21.53SPCh. 21 - Prob. 21.54SPCh. 21 - Prob. 21.55SPCh. 21 - Prob. 21.56SPCh. 21 - Prob. 21.57SPCh. 21 - Prob. 21.58SPCh. 21 - Prob. 21.59SPCh. 21 - Prob. 21.60SPCh. 21 - Prob. 21.61SPCh. 21 - Prob. 21.62SPCh. 21 - Prob. 21.63SPCh. 21 - Prob. 21.64SPCh. 21 - Prob. 21.65SPCh. 21 - Prob. 21.66SPCh. 21 - Prob. 21.67SPCh. 21 - Prob. 21.68SPCh. 21 - Prob. 21.69SPCh. 21 - Prob. 21.70SPCh. 21 - Prob. 21.71SPCh. 21 - Prob. 21.72SPCh. 21 - Prob. 21.73SPCh. 21 - Prob. 21.74SPCh. 21 - Prob. 21.75SPCh. 21 - Prob. 21.76SPCh. 21 - Prob. 21.77SPCh. 21 - Prob. 21.78SPCh. 21 - Prob. 21.79SPCh. 21 - Prob. 21.80SPCh. 21 - Prob. 21.81SPCh. 21 - Prob. 21.82SPCh. 21 - Prob. 21.83SPCh. 21 - Prob. 21.84SPCh. 21 - Prob. 21.85SPCh. 21 - Prob. 21.86SPCh. 21 - Prob. 21.87SPCh. 21 - Prob. 21.88SPCh. 21 - Prob. 21.89SPCh. 21 - Prob. 21.90SPCh. 21 - Prob. 21.92SPCh. 21 - Prob. 21.93SPCh. 21 - Prob. 21.94SPCh. 21 - Prob. 21.95SPCh. 21 - Prob. 21.96SPCh. 21 - Prob. 21.97SPCh. 21 - Prob. 21.98SPCh. 21 - Prob. 21.99SPCh. 21 - Prob. 21.100SPCh. 21 - Prob. 21.101SPCh. 21 - Prob. 21.102SPCh. 21 - Prob. 21.103SPCh. 21 - Prob. 21.104SPCh. 21 - Prob. 21.105SPCh. 21 - Prob. 21.106SPCh. 21 - Prob. 21.107SPCh. 21 - Prob. 21.108SPCh. 21 - Prob. 21.109SPCh. 21 - Prob. 21.110CHPCh. 21 - Prob. 21.111CHPCh. 21 - Prob. 21.112CHPCh. 21 - Prob. 21.113CHPCh. 21 - Prob. 21.114CHPCh. 21 - Prob. 21.115CHPCh. 21 - Prob. 21.116CHPCh. 21 - Prob. 21.117CHPCh. 21 - Prob. 21.118CHPCh. 21 - Prob. 21.119CHPCh. 21 - Prob. 21.120CHPCh. 21 - Prob. 21.121CHPCh. 21 - Prob. 21.122CHPCh. 21 - Prob. 21.123CHPCh. 21 - Prob. 21.124CHPCh. 21 - Prob. 21.125CHPCh. 21 - Prob. 21.127CHPCh. 21 - Prob. 21.128CHPCh. 21 - Prob. 21.129CHPCh. 21 - Prob. 21.130MPCh. 21 - Prob. 21.131MPCh. 21 - Prob. 21.132MPCh. 21 - Prob. 21.133MPCh. 21 - Prob. 21.134MPCh. 21 - At high temperatures, coke reduces silica...Ch. 21 - Prob. 21.136MPCh. 21 - Zinc chromite (ZnCr2O4), once used to make...Ch. 21 - Prob. 21.140MP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning