![Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card](https://www.bartleby.com/isbn_cover_images/9781337086431/9781337086431_largeCoverImage.gif)
(a)
Interpretation: The empirical formula and the molecular formula of the given helicene are to be calculated. The balanced
Concept introduction: Helicines are defined as the polycyclic
To determine: The empirical formula of the given helicene.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 160IP
Answer
The empirical formula of the given helicene is
Explanation of Solution
Explanation
The empirical formula of the given helicene is
Helicene is an aromatic compound so it must contain carbon and hydrogen atoms.
Given
Weight of
Weight of compound is
The weight of carbon is calculated by using the formula,
The molar mass of carbon is
The molar mass of carbon dioxide is
Substitute the value of weight of
The weight of carbon is
Therefore the weight of hydrogen is calculated as,
Therefore the number of moles of carbon and hydrogen is calculated by the formula,
Substitute the value of the given mass and the molar mass, to calculate the number of moles of carbon and hydrogen in the above equation.
For carbon,
For hydrogen,
The calculated values are divided by the smallest number of moles to determine the simplest whole number ratio of moles of each constituent.
For carbon
For hydrogen
By multiplying each with 3 we get the whole number as,
For carbon
For hydrogen
Hence, the empirical formula of the compound is
(b)
Interpretation: The empirical formula and the molecular formula of the given helicene are to be calculated. The balanced chemical reaction for the combustion of helicene is to be stated.
Concept introduction: Helicines are defined as the polycyclic aromatic compounds in which the aromatic ring is annulated to provide helically shaped molecule. The molecular formula of any organic compound is determined by using empirical formula when the percent of each element is given in the compound.
To determine: The molecular formula of the given helicene.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 160IP
Answer
The molecular formula of the given helicene is
Explanation of Solution
Explanation
The molecular formula of the given helicene is
Given
Molality is
Weight of solvent is
Weight of solute is
Therefore the molecular weight of solute is calculated by the given expression.
Substitute the values of weight of solute, molality and weight of solvent in the above expression.
Now, The empirical mass of
Substitute the value of molecular and empirical weight in the above expression.
Therefore the molecular formula is calculated as,
Hence, the molecular formula is
(c)
Interpretation: The empirical formula and the molecular formula of the given helicene are to be calculated. The balanced chemical reaction for the combustion of helicene is to be stated.
Concept introduction: Helicines are defined as the polycyclic aromatic compounds in which the aromatic ring is annulated to provide helically shaped molecule. The molecular formula of any organic compound is determined by using empirical formula when the percent of each element is given in the compound.
To determine: The balanced chemical reaction for the combustion of helicene.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 160IP
Answer
The balanced chemical reaction for the combustion of helicene is,
Explanation of Solution
Explanation
The balanced chemical reaction for the combustion of helicene is shown below.
The balanced reaction for the combustion of helicene is,
Want to see more full solutions like this?
Chapter 21 Solutions
Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card
- 5. b. For Trials 2 and 3, the molar mass of the solute was 151 g/mol and 143 g/mol respectively. a. What is the average molar mass of the solute ? b. What are the standard deviation and the relative standard deviation (%RSD) for the molar mass of the solute ?arrow_forwardShow work. Don't give Ai generated solutionarrow_forward2. Explain why ice cubes formed from water of a glacier freeze at a higher temperature than ice cubes formed from water of an under- ground aquifer. Photodynamic/iStockphotoarrow_forward
- Show reaction mechanism. don't give Ai generated solutionarrow_forward7. Draw the Lewis structures and molecular orbital diagrams for CO and NO. What are their bond orders? Are the molecular orbital diagrams similar to their Lewis structures? Explain. CO Lewis Structure NO Lewis Structure CO Bond Order NO Bond Order NO Molecular Orbital Diagram CO Molecular Orbital Diagramarrow_forward5. The existence of compounds of the noble gases was once a great surprise and stimulated a great deal of theoretical work. Label the molecular orbital diagram for XeF (include atom chemical symbol, atomic orbitals, and molecular orbitals) and deduce its ground state electron configuration. Is XeF likely to have a shorter bond length than XeF+? Bond Order XeF XeF+arrow_forward
- 6. Draw the molecular orbital diagram shown to determine which of the following is paramagnetic. B22+ B22+, B2, C22, B22 and N22+ Molecular Orbital Diagram B2 C22- B22- N22+ Which molecule is paramagnetic?arrow_forward3. Put the following species in order of increasing bond length by using molecular orbital diagrams and calculating their bond orders: F2, F2, F2+ Molecular Orbital Diagram F2 F2 F2+ Bond Order Shortest bond: Longest bondarrow_forward3. Put the following species in order of increasing bond length by using molecular orbital diagrams and calculating their bond orders: F2, F2, F2+ Molecular Orbital Diagram F2 F2 F2+ Bond Orderarrow_forward
- 4. The superoxide ion, Oz, plays an important role in the ageing processes that take place in organisms. Judge whether Oz is likely to have larger or smaller dissociation energy than 02. Molecular Orbital Diagram 02 02 Does O2 have larger or smaller dissociation energy?: Bond Orderarrow_forward1. How many molecular orbitals can be built from the valence shell orbitals in O2?arrow_forwardSho reaction mechanism. Don't give Ai generated solutionarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580350/9781305580350_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)