
(a)
Interpretation: The empirical formula and the molecular formula of the given helicene are to be calculated. The balanced
Concept introduction: Helicines are defined as the polycyclic
To determine: The empirical formula of the given helicene.
(a)

Answer to Problem 160IP
Answer
The empirical formula of the given helicene is
Explanation of Solution
Explanation
The empirical formula of the given helicene is
Helicene is an aromatic compound so it must contain carbon and hydrogen atoms.
Given
Weight of
Weight of compound is
The weight of carbon is calculated by using the formula,
The molar mass of carbon is
The molar mass of carbon dioxide is
Substitute the value of weight of
The weight of carbon is
Therefore the weight of hydrogen is calculated as,
Therefore the number of moles of carbon and hydrogen is calculated by the formula,
Substitute the value of the given mass and the molar mass, to calculate the number of moles of carbon and hydrogen in the above equation.
For carbon,
For hydrogen,
The calculated values are divided by the smallest number of moles to determine the simplest whole number ratio of moles of each constituent.
For carbon
For hydrogen
By multiplying each with 3 we get the whole number as,
For carbon
For hydrogen
Hence, the empirical formula of the compound is
(b)
Interpretation: The empirical formula and the molecular formula of the given helicene are to be calculated. The balanced chemical reaction for the combustion of helicene is to be stated.
Concept introduction: Helicines are defined as the polycyclic aromatic compounds in which the aromatic ring is annulated to provide helically shaped molecule. The molecular formula of any organic compound is determined by using empirical formula when the percent of each element is given in the compound.
To determine: The molecular formula of the given helicene.
(b)

Answer to Problem 160IP
Answer
The molecular formula of the given helicene is
Explanation of Solution
Explanation
The molecular formula of the given helicene is
Given
Molality is
Weight of solvent is
Weight of solute is
Therefore the molecular weight of solute is calculated by the given expression.
Substitute the values of weight of solute, molality and weight of solvent in the above expression.
Now, The empirical mass of
Substitute the value of molecular and empirical weight in the above expression.
Therefore the molecular formula is calculated as,
Hence, the molecular formula is
(c)
Interpretation: The empirical formula and the molecular formula of the given helicene are to be calculated. The balanced chemical reaction for the combustion of helicene is to be stated.
Concept introduction: Helicines are defined as the polycyclic aromatic compounds in which the aromatic ring is annulated to provide helically shaped molecule. The molecular formula of any organic compound is determined by using empirical formula when the percent of each element is given in the compound.
To determine: The balanced chemical reaction for the combustion of helicene.
(c)

Answer to Problem 160IP
Answer
The balanced chemical reaction for the combustion of helicene is,
Explanation of Solution
Explanation
The balanced chemical reaction for the combustion of helicene is shown below.
The balanced reaction for the combustion of helicene is,
Want to see more full solutions like this?
Chapter 21 Solutions
EBK CHEMISTRY: AN ATOMS FIRST APPROACH
- For Raman spectroscopy/imaging, which statement is not true regarding its disadvantages? a) Limited spatial resolution. b) Short integration time. c) A one-dimensional technique. d) Weak signal, only 1 in 108 incident photons is Raman scattered. e) Fluorescence interference.arrow_forwardUsing a cell of known pathlength b = 1.25115 x 10-3 cm, a water absorption spectrum was measured. The band at 1645 cm-1, assigned to the O-H bending, showed an absorbance, A, of 1.40. a) Assuming that water density is 1.00 g/mL, calculate the water molar concentration c (hint: M= mole/L) b) Calculate the molar absorptivity, a, of the 1645 cm-1 band c) The transmitted light, I, can be written as I= Ioexp(-xb), where x is the absorption coefficient (sometimes designated as alpha), Io is the input light, and b is the cell pathlength. Prove that x= (ln10)*x*c. (Please provide a full derivation of the equation for x from the equation for I). d) Calculate x for the 1645 cm-1 bandarrow_forwardI need help with the follloaingarrow_forward
- For a CARS experiment on a Raman band 918 cm-1, if omega1= 1280 nm, calculate the omega2 in wavelength (nm) and the CARS output in wavelength (nm).arrow_forwardI need help with the following questionarrow_forwardFor CARS, which statement is not true regarding its advantages? a) Contrast signal based on vibrational characteristics, no need for fluorescent tagging. b) Stronger signals than spontaneous Raman. c) Suffers from fluorescence interference, because CARS signal is at high frequency. d) Faster, more efficient imaging for real-time analysis. e) Higher resolution than spontaneous Raman microscopy.arrow_forward
- Draw the major product of the Claisen condensation reaction between two molecules of this ester. Ignore inorganic byproducts. Incorrect, 5 attempts remaining 1. NaOCH3/CH3OH 2. Acidic workup Select to Draw O Incorrect, 5 attempts remaining The total number of carbons in the parent chain is incorrect. Review the reaction conditions including starting materials and/or intermediate structures and recount the number of carbon atoms in the parent chain of your structure. OKarrow_forwardUsing a cell of known pathlength b = 1.25115 x 10-3 cm, a water absorption spectrum was measured. The band at 1645 cm-1, assigned to the O-H bending, showed an absorbance, A, of 1.40. a) Assuming that water density is 1.00 g/mL, calculate the water molar concentration c (hint: M= mole/L) b) Calculate the molar absorptivity, a, of the 1645 cm-1 band c) The transmitted light, I, can be written as I= Ioexp(-xb), where x is the absorption coefficient (sometimes designated as alpha), Io is the input light, and b is the cell pathlength. Prove that x= (ln10)*x*c d) Calculate x for the 1645 cm-1 bandarrow_forwardConvert 1.38 eV into wavelength (nm) and wavenumber (cm-1) (c = 2.998 x 108 m/s; h = 6.626 x 10-34 J*s).arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning





