EBK LOOSE-LEAF VERSION OF UNIVERSE
11th Edition
ISBN: 9781319227975
Author: KAUFMANN
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 9CC
To determine
Whether a 1-M☉ core of iron collapses and produces a supernova, given that Sun cannot create the pressure necessary to fuse silicon into iron.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A Type Ia Supernova is an example of a:
International Astronomical Union reported on 24 Feb 1987:
An object was discovered on Feb. 24.37 UT (position R.A. = 5h35m.8, Decl. = -69
18'), obtained m = 4.8 on Feb. 24.454 UT. This object proved to be the most famous
supernova (SN) in the 20th Century and the brightest visible from Earth since 1604.
It is classified as a SN of the type Il in the Large Magellanic Cloud (SN1987A). Its
brightness peaked in May 1987, with an apparent magnitude of m = 2.8.
a) Find the absolute magnitude M of the SN1987A at maximum. Distance of the
LMC is 51,400 pc.
b) The progenitor (before SN explosion) star was a blue supergiant of the
apparent magnitude m = 12.8. How much brighter (in terms of flux density)
this SN was at maximum compared to the progenitor star. Find the ratio FSN /
Ebefore
A Type la supernova is observed and
achieves an apparent magnitude of
m = 19.89 at peak brightness. The
absolute magnitudes of Type la
supernovae at peak brightness are
known to be M = –19. Determine the
distance to the supernovae in units of
Мрс.
Select one:
а.
600
O b. 1000
О с
10
O d. 200
е.
300
Chapter 20 Solutions
EBK LOOSE-LEAF VERSION OF UNIVERSE
Ch. 20 - Prob. 1CCCh. 20 - Prob. 2CCCh. 20 - Prob. 3CCCh. 20 - Prob. 4CCCh. 20 - Prob. 5CCCh. 20 - Prob. 6CCCh. 20 - Prob. 7CCCh. 20 - Prob. 8CCCh. 20 - Prob. 9CCCh. 20 - Prob. 10CC
Ch. 20 - Prob. 11CCCh. 20 - Prob. 12CCCh. 20 - Prob. 13CCCh. 20 - Prob. 14CCCh. 20 - Prob. 15CCCh. 20 - Prob. 16CCCh. 20 - Prob. 17CCCh. 20 - Prob. 18CCCh. 20 - Prob. 1QCh. 20 - Prob. 2QCh. 20 - Prob. 3QCh. 20 - Prob. 4QCh. 20 - Prob. 5QCh. 20 - Prob. 6QCh. 20 - Prob. 7QCh. 20 - Prob. 8QCh. 20 - Prob. 9QCh. 20 - Prob. 10QCh. 20 - Prob. 11QCh. 20 - Prob. 12QCh. 20 - Prob. 13QCh. 20 - Prob. 14QCh. 20 - Prob. 15QCh. 20 - Prob. 16QCh. 20 - Prob. 17QCh. 20 - Prob. 18QCh. 20 - Prob. 19QCh. 20 - Prob. 20QCh. 20 - Prob. 21QCh. 20 - Prob. 22QCh. 20 - Prob. 23QCh. 20 - Prob. 24QCh. 20 - Prob. 25QCh. 20 - Prob. 26QCh. 20 - Prob. 27QCh. 20 - Prob. 28QCh. 20 - Prob. 29QCh. 20 - Prob. 30QCh. 20 - Prob. 31QCh. 20 - Prob. 32QCh. 20 - Prob. 33QCh. 20 - Prob. 34QCh. 20 - Prob. 35QCh. 20 - Prob. 36QCh. 20 - Prob. 37QCh. 20 - Prob. 38QCh. 20 - Prob. 39QCh. 20 - Prob. 40QCh. 20 - Prob. 41QCh. 20 - Prob. 42QCh. 20 - Prob. 43QCh. 20 - Prob. 44QCh. 20 - Prob. 45QCh. 20 - Prob. 46QCh. 20 - Prob. 47QCh. 20 - Prob. 48QCh. 20 - Prob. 49QCh. 20 - Prob. 50QCh. 20 - Prob. 51QCh. 20 - Prob. 52QCh. 20 - Prob. 53QCh. 20 - Prob. 54QCh. 20 - Prob. 55QCh. 20 - Prob. 56QCh. 20 - Prob. 57QCh. 20 - Prob. 58QCh. 20 - Prob. 59QCh. 20 - Prob. 60QCh. 20 - Prob. 61QCh. 20 - Prob. 62QCh. 20 - Prob. 63QCh. 20 - Prob. 64QCh. 20 - Prob. 65QCh. 20 - Prob. 66QCh. 20 - Prob. 67QCh. 20 - Prob. 68QCh. 20 - Prob. 69QCh. 20 - Prob. 70QCh. 20 - Prob. 71QCh. 20 - Prob. 72QCh. 20 - Prob. 73QCh. 20 - Prob. 74QCh. 20 - Prob. 75Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How would the spectra of a type II supernova be different from a type Ia supernova? Hint: Consider the characteristics of the objects that are their source.arrow_forwardA supernova can eject material at a velocity of 10,000 km/s. How long would it take a supernova remnant to expand to a radius of 1 AU? How long would it take to expand to a radius of 1 light-years? Assume that the expansion velocity remains constant and use the relationship: expansiontime=distanceexpansionvelocity .arrow_forwardHow is a nova different from a type Ia supernova? How does it differ from a type II supernova?arrow_forward
- What observations from SN 1987A helped confirm theories about supernovae?arrow_forwardAn object was discovered on Feb. 24.37 UT (position R.A. = 5h35m.8, Decl. = -69 18'), obtained m = 4.8 on Feb. 24.454 UT. This object proved to be the most famous supernova (SN) in the 20th Century and the brightest visible from Earth since 1604. It is classified as a SN of the type Il in the Large Magellanic Cloud (SN1987A). Its brightness peaked in May 1987, with an apparent magnitude of m = 2.8. a) Find the absolute magnitude M of the SN1987A at maximum. Distance of the LMC is 51,400 pc. b) The progenitor (before SN explosion) star was a blue supergiant of the apparent magnitude m = 12.8. How much brighter (in terms of flux density) this SN was at maximum compared to the progenitor star. Find the ratio FSN/ Ebetorearrow_forwardAssume that the mass of the core of a star that just went Supernova type II is $2.5 \mathrm{M}_{\odot}$ before and after the collapse, while the Radius changes from $10^3 \mathrm{~km}$, before the collapse, to 12 km , after the collapse respectively.(a) What is the change in potential energy of the core between the two stages before and after the collapse?(b) Knowing that the luminosity of the Sun is $4 \times 10^{26} \mathrm{~W}$ how many years would it take the Sun to release the same amount of energy?arrow_forward
- 24 If the Temperature of the core of a supernova is 3200 x 1023 K, what should be the average translational kinetic energy of the particles moving inside this supernov (Boltzmann's constant = 1.38 x 10-23 J/K) Type your answer...arrow_forwardDuring the collapse of a supernova explosion, calculate the change in gravitational potential energy associated with the core size. Assume a typical core mass of 1.4 Msun and an initial radius of 1000 km.arrow_forwardComment on the difference between a nova and supernova. [Note: There are two basic types of supernova.]arrow_forward
- A supernova remnant is now 3.85 pc in radius and is expanding at 3,350 km/s. Approximately how many years ago did the supernova occur? (Note: 1 pc = 3.1 ✕ 1013 km and 1 yr = 3.2 ✕ 107 s.)arrow_forwardConsider a star with more brightness at 280 pc from the Sun. Suppose this star gets exploded as a supernova at a temperature of 18000 K. The absolute bolometric magnitude of this supernova is-12.24. Calculate its diameter by assuming a sphere at maximum light. (Assume the luminosity of Sun as 3.8×1026 W, the mass of thesun as 1.9 ×1030 kg, and surface temperature of Sun as 5778 K).(a) 1.7×108 km(6) 3.5x108 km(c) 5.2x108 km(d) 6.9 x108 kmarrow_forwardA main sequence star of mass 25 M⊙has a luminosity of approximately 80,000 L⊙. a. At what rate DOES MASS VANISH as H is fused to He in the star’s core? Note: When we say “mass vanish '' what we really mean is “gets converted into energy and leaves the star as light”. Note: approximate answer: 3.55 E14 kg/s b. At what rate is H converted into He? To do this you need to take into account that for every kg of hydrogen burned, only 0.7% gets converted into energy while the rest turns into helium. Approximate answer = 5E16 kg/s c. Assuming that only the 10% of the star’s mass in the central regions will get hot enough for fusion, calculate the main sequence lifetime of the star. Put your answer in years, and compare it to the lifetime of the Sun. It should be much, much shorter. Approximate answer: 30 million years.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning