EBK LOOSE-LEAF VERSION OF UNIVERSE
11th Edition
ISBN: 9781319227975
Author: KAUFMANN
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 75Q
To determine
The reason for the white dwarf stars to be more common than neutron stars. Given that there are more sequences of low mass (less than
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If an X-ray binary consists of a 16 solar mass star and a neutron Star orbiting each other every 15.4 days, what is their average separation? (Hint: Use the version of Keller's third law for binary stars, Ma + Mb = a^3 /p^2 ; make sure you express quantities in unites of AU, solar masses, and years. Assume the mass of a neutron Star is 1.6 solar masses.)
___________ AU
If an X-ray binary consists of a 17-solar-mass star and a neutron star orbiting each other every 23.2 days, what is their average separation? (Hints: Use the version of Kepler's third law for binary stars,
MA + MB = a^3/p^2
make sure you express quantities in units of AU, solar masses, and years. Assume the mass of the neutron star is 1.4 solar masses.)
If an X-ray binary consists of a 10-solar-mass star and a neutron star orbiting each other every 20.8 days, what is their average separation? (Hints: Use the version of Kepler's third law for binary stars, M, + M3 = ; make sure you express quantities in units of AU,
solar masses, and years. Assume the mass of the neutron star is 1.6 solar masses.)
a3
AU
Chapter 20 Solutions
EBK LOOSE-LEAF VERSION OF UNIVERSE
Ch. 20 - Prob. 1CCCh. 20 - Prob. 2CCCh. 20 - Prob. 3CCCh. 20 - Prob. 4CCCh. 20 - Prob. 5CCCh. 20 - Prob. 6CCCh. 20 - Prob. 7CCCh. 20 - Prob. 8CCCh. 20 - Prob. 9CCCh. 20 - Prob. 10CC
Ch. 20 - Prob. 11CCCh. 20 - Prob. 12CCCh. 20 - Prob. 13CCCh. 20 - Prob. 14CCCh. 20 - Prob. 15CCCh. 20 - Prob. 16CCCh. 20 - Prob. 17CCCh. 20 - Prob. 18CCCh. 20 - Prob. 1QCh. 20 - Prob. 2QCh. 20 - Prob. 3QCh. 20 - Prob. 4QCh. 20 - Prob. 5QCh. 20 - Prob. 6QCh. 20 - Prob. 7QCh. 20 - Prob. 8QCh. 20 - Prob. 9QCh. 20 - Prob. 10QCh. 20 - Prob. 11QCh. 20 - Prob. 12QCh. 20 - Prob. 13QCh. 20 - Prob. 14QCh. 20 - Prob. 15QCh. 20 - Prob. 16QCh. 20 - Prob. 17QCh. 20 - Prob. 18QCh. 20 - Prob. 19QCh. 20 - Prob. 20QCh. 20 - Prob. 21QCh. 20 - Prob. 22QCh. 20 - Prob. 23QCh. 20 - Prob. 24QCh. 20 - Prob. 25QCh. 20 - Prob. 26QCh. 20 - Prob. 27QCh. 20 - Prob. 28QCh. 20 - Prob. 29QCh. 20 - Prob. 30QCh. 20 - Prob. 31QCh. 20 - Prob. 32QCh. 20 - Prob. 33QCh. 20 - Prob. 34QCh. 20 - Prob. 35QCh. 20 - Prob. 36QCh. 20 - Prob. 37QCh. 20 - Prob. 38QCh. 20 - Prob. 39QCh. 20 - Prob. 40QCh. 20 - Prob. 41QCh. 20 - Prob. 42QCh. 20 - Prob. 43QCh. 20 - Prob. 44QCh. 20 - Prob. 45QCh. 20 - Prob. 46QCh. 20 - Prob. 47QCh. 20 - Prob. 48QCh. 20 - Prob. 49QCh. 20 - Prob. 50QCh. 20 - Prob. 51QCh. 20 - Prob. 52QCh. 20 - Prob. 53QCh. 20 - Prob. 54QCh. 20 - Prob. 55QCh. 20 - Prob. 56QCh. 20 - Prob. 57QCh. 20 - Prob. 58QCh. 20 - Prob. 59QCh. 20 - Prob. 60QCh. 20 - Prob. 61QCh. 20 - Prob. 62QCh. 20 - Prob. 63QCh. 20 - Prob. 64QCh. 20 - Prob. 65QCh. 20 - Prob. 66QCh. 20 - Prob. 67QCh. 20 - Prob. 68QCh. 20 - Prob. 69QCh. 20 - Prob. 70QCh. 20 - Prob. 71QCh. 20 - Prob. 72QCh. 20 - Prob. 73QCh. 20 - Prob. 74QCh. 20 - Prob. 75Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How would the spectra of a type II supernova be different from a type Ia supernova? Hint: Consider the characteristics of the objects that are their source.arrow_forwardIf the formation of a neutron star leads to a supernova explosion, explain why only three of the hundreds of known pulsars are found in supernova remnants.arrow_forwardAs we have discussed, Sirius B in the Sirius binary system is a white dwarf with MB ∼ 1M , LB ∼ 0.024L ,and rB ∼ 0.0084r . For such a white dwarf, the temperature at the center is estimated to be ∼ 107 K.If Sirius B’s luminosity were due to hydrogen fusion, what is the upper limit of the mass fraction of thehydrogen in such a white dwarf?Step 1: Calculate the observed energy production rate per unit mass (remember luminosity is energy outputper unit time).Step 2: Use the per unit mass energy generation rate of hydrogen fusion (via PP chain) to estimate thepossible hydrogen mass fraction given the condition at the center of the white dwarf.arrow_forward
- If a neutron Star has a radius of 12 km and a temperature of 8.0 x 10^6 K, how luminous is it? Express your answer in watts and also in solar luminosity units. (Hint: Use the relation L/L= (R/R)^2(T/T)^4 . Use 5,800 K for the surface temperature of the Sun. The luminosity of the sun is 3.83 x 10^26W) luminosity in watts ________ W luminosity in solar luminosity units ______ Larrow_forwardA 1.8 M neutron and a 0.7 M white dwarf have been found orbiting each other with a period of 28 minutes. What is their average separation? Convert your answer to units of the Suns radius, which is 0.0047 AU. (hint: Use the version of Keller's third law for the binary stars Ma + Mb = a^3/p^2 ; make sure you express quantities in unites of AU, solar masses, and years. NOTE: a year is 3.2 x 10^7 s) ___________ solar radiiarrow_forwardWhat is the free-fall time of a 10 MSun main-sequence star? O 100 hours O 10 hours O 1 hour O 0.1 hoursarrow_forward
- Why are Cepheid variables important? O Cepheids variables are pulsating stars whose pulsation periods are directly related to their true luminosities. Therefore they can be used as distance indicators. O Cepheids variables are supermassive stars that are on the verge of becoming supernovae. Therefore they allow us to choose candidates to watch if we hope to observe a supernova. O Cepheid variables are stars that vary in brightness because they harbor a black hole. Therefore, they provide direct evidence for black holes. O Cepheids variables are a type of irregular galaxy, much more common in the early universe. Therefore they help to understand how galaxies formed.arrow_forwardOne way to calculate the radius of a star is to use its luminosity and temperature and assume that the star radiates approximately like a blackbody. Astronomers have measured the characteristics of central stars of planetary nebulae and have found that a typical central star is 16 times as luminous and 20 times as hot (about 110,000 K) as the Sun. Find the radius in terms of the Sun’s. How does this radius compare with that of a typical white dwarf?arrow_forwardA main sequence star of mass 25 M⊙has a luminosity of approximately 80,000 L⊙. a. At what rate DOES MASS VANISH as H is fused to He in the star’s core? Note: When we say “mass vanish '' what we really mean is “gets converted into energy and leaves the star as light”. Note: approximate answer: 3.55 E14 kg/s b. At what rate is H converted into He? To do this you need to take into account that for every kg of hydrogen burned, only 0.7% gets converted into energy while the rest turns into helium. Approximate answer = 5E16 kg/s c. Assuming that only the 10% of the star’s mass in the central regions will get hot enough for fusion, calculate the main sequence lifetime of the star. Put your answer in years, and compare it to the lifetime of the Sun. It should be much, much shorter. Approximate answer: 30 million years.arrow_forward
- calculate the main sequence lifetime of (a) a 4M☉ star, and (b) a 0.75M☉ star. Express the lifetimes of these stars as multiples of the Sun's lifetime(t☉=10^10years), as well as in units of years.arrow_forwardFor the PP chain 0.7% of the mass participating in nuclear fusion is liberated as energy which produces a star's luminosity. Assume that the core of a main sequence star consists of 10% of its total mass. Hence, estimate the lifetime of a star on the main sequence in terms of its luminosity L/L. Give your answer in years. You may use the observed mass-luminosity relation L x M³.5, where M is the star's total mass. Using typical values, calculate estimates for the main sequence lifetime of a KO star and a 05 star. Describe briefly why your estimate might be more accurate for K stars compared to O stars.arrow_forwardA Type Ia Supernova is an example of a:arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning