EBK LOOSE-LEAF VERSION OF UNIVERSE
11th Edition
ISBN: 9781319227975
Author: KAUFMANN
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 6CC
To determine
Whether the Sun will be at its largest size and be most luminous or not, when it becomes a red giant.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A red giant star might have radius = 104 times the solar radius,
and luminosity = 1730 times solar luminosity.
Use the data given below to calculate the temperature
at the surface of the red giant star.
Data:
solar radius R = 7 x 108 meters
solar luminosity L = 4 x 1026 watts
Stefan-Boltzmann constant
a = 5.67 x 10-8 W m² K-4
(in K)
A: 1226 OB: 1434 OC: 1678 OD: 1963 OE: 2297 OF: 2688 OG: 3145 OH: 3679
We will take a moment to compare how brightly a white dwarf star shines compared to a red giant star. For the sake of this probler, lets assume a white dwarf has a
temperature around 10,000 K and a red giant has a temperature around 5,000 K. As for their stellar radii, the white dwarf has a radius about 1/100th that of the Sun
and a red giant has a radius around 100 times larger than the Sun.
With this in mind, how does the luminosity of a red giant star compare to that of a white dwarf (Hint: do not try to enter all of these numbers into the luminosity
equation fit won't go well); instead, remember that you are only interested in the ratio between the two, so all common units and components can be divided out)?
Please enter your answer in terms of the luminosity of the red giant divided by the luminosity of the white dwarf and round to two significant figures.
Also, please avoid using commas in your answer.
A Moving to another question will save this response.
Question 1 of 32 >»
31…
Using solar units, we find that a star has 4 times the luminosity of the Sun, a mass 1.25 times the mass of the Sun, and a surface temperature of 4090 K (take the Sun's surface temperature to be 5784 K for the sake of this problem). This means the star has a radius of.................... solar radii and is a .................... star (use the classification).
Chapter 20 Solutions
EBK LOOSE-LEAF VERSION OF UNIVERSE
Ch. 20 - Prob. 1CCCh. 20 - Prob. 2CCCh. 20 - Prob. 3CCCh. 20 - Prob. 4CCCh. 20 - Prob. 5CCCh. 20 - Prob. 6CCCh. 20 - Prob. 7CCCh. 20 - Prob. 8CCCh. 20 - Prob. 9CCCh. 20 - Prob. 10CC
Ch. 20 - Prob. 11CCCh. 20 - Prob. 12CCCh. 20 - Prob. 13CCCh. 20 - Prob. 14CCCh. 20 - Prob. 15CCCh. 20 - Prob. 16CCCh. 20 - Prob. 17CCCh. 20 - Prob. 18CCCh. 20 - Prob. 1QCh. 20 - Prob. 2QCh. 20 - Prob. 3QCh. 20 - Prob. 4QCh. 20 - Prob. 5QCh. 20 - Prob. 6QCh. 20 - Prob. 7QCh. 20 - Prob. 8QCh. 20 - Prob. 9QCh. 20 - Prob. 10QCh. 20 - Prob. 11QCh. 20 - Prob. 12QCh. 20 - Prob. 13QCh. 20 - Prob. 14QCh. 20 - Prob. 15QCh. 20 - Prob. 16QCh. 20 - Prob. 17QCh. 20 - Prob. 18QCh. 20 - Prob. 19QCh. 20 - Prob. 20QCh. 20 - Prob. 21QCh. 20 - Prob. 22QCh. 20 - Prob. 23QCh. 20 - Prob. 24QCh. 20 - Prob. 25QCh. 20 - Prob. 26QCh. 20 - Prob. 27QCh. 20 - Prob. 28QCh. 20 - Prob. 29QCh. 20 - Prob. 30QCh. 20 - Prob. 31QCh. 20 - Prob. 32QCh. 20 - Prob. 33QCh. 20 - Prob. 34QCh. 20 - Prob. 35QCh. 20 - Prob. 36QCh. 20 - Prob. 37QCh. 20 - Prob. 38QCh. 20 - Prob. 39QCh. 20 - Prob. 40QCh. 20 - Prob. 41QCh. 20 - Prob. 42QCh. 20 - Prob. 43QCh. 20 - Prob. 44QCh. 20 - Prob. 45QCh. 20 - Prob. 46QCh. 20 - Prob. 47QCh. 20 - Prob. 48QCh. 20 - Prob. 49QCh. 20 - Prob. 50QCh. 20 - Prob. 51QCh. 20 - Prob. 52QCh. 20 - Prob. 53QCh. 20 - Prob. 54QCh. 20 - Prob. 55QCh. 20 - Prob. 56QCh. 20 - Prob. 57QCh. 20 - Prob. 58QCh. 20 - Prob. 59QCh. 20 - Prob. 60QCh. 20 - Prob. 61QCh. 20 - Prob. 62QCh. 20 - Prob. 63QCh. 20 - Prob. 64QCh. 20 - Prob. 65QCh. 20 - Prob. 66QCh. 20 - Prob. 67QCh. 20 - Prob. 68QCh. 20 - Prob. 69QCh. 20 - Prob. 70QCh. 20 - Prob. 71QCh. 20 - Prob. 72QCh. 20 - Prob. 73QCh. 20 - Prob. 74QCh. 20 - Prob. 75Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Describe the evolution of a star with a mass similar to that of the Sun, from the protostar stage to the time it first becomes a red giant. Give the description in words and then sketch the evolution on an HR diagram.arrow_forwardWhat physical properties are different for an M giant with a luminosity of 1000 LSunand an M dwarf with a luminosity of 0.5 LSun? What physical properties are the same?arrow_forwardWhich letter on the diagram represents Red Giants?arrow_forward
- We will take a moment to compare how brightly a white dwarf star shines compared to a red giant star. For the sake of this problem, let's assume a white dwarf has a temperature around 10,000 K and a red giant has a temperature around 5,000 K. As for their stellar radiatin, the white dwarf has a radius about 1/100th that of the Sun, and a red giant has a radius around 100 times larger than the Sun. With this in mind, how does the luminosity of a red giant star compare to that of a white dwarf (Hint: do not try to enter all of these numbers into the luminosity equation {it won't go well}; instead, remember that you are only interested in the ratio between the two, so all common units and components can be divided out)? Please enter your answer in terms of the luminosity of the red giant divided by the luminosity of the white dwarf and round to two significant figures. Also, please avoid using commas in your answer.arrow_forwardFor a main sequence star with luminosity L, how many kilograms of hydrogen is being converted into helium per second? Use the formula that you derive to estimate the mass of hydrogen atoms that are converted into helium in the interior of the sun (LSun = 3.9 x 1026 W). (Note: the mass of a hydrogen atom is 1 mproton and the mass of a helium atom is 3.97 mproton. You need four hydrogen nuclei to form one helium nucleus.)arrow_forwardQUESTION 16 Use the figure shown below to complete the following statement: A low-mass protostar (0.5 to 8M the mass compared to our sun) remains roughly constant in decreases in until it makes a turn towards the main sequence, as it follows its evolutionary track. Protostars of different masses follow diferent paths on their way to the main sequence. 107 Luminosity (L) 10 105 10 107 10² 101 1 10-1 10-2 10-3 Spectral type 0.01 R 0.001 Re 60 M MAIN SEQUENCE 40,000 30,000 20 Mau 10 Mgun 5 Mun 0.1 Run Ren radius; temperature luminosity; radius 3 Min. 05 BO temperature; luminosity Oluminosity: temperature radius: luminosity 1 M 10,000 6000 Surlace temperature (K) 1,000 Rs 2 M STAR L 0.8 M B5 AO FOGO КБ МБ -10 +10 3000 Absolute visual magnitude andarrow_forward
- Do this in 10 min. I will give like on answerarrow_forwardMatch the spectral type and luminosity class to theletters shown on the Hertzsprung-Russell diagram 1) A WD (White Dwarf)2) G V (Main Sequence) 3) M V (Main Sequence)4) M I (Supergiant)5) G III (Giant)arrow_forwardThe mass-luminosity relation describes the mathematical relationship between luminosity and mass for main sequence stars. It describes how a star with a mass of 4 M⊙ would have a luminosity of ______ L⊙. If a star has a radius 1/2 that of the Sun and a temperature 4 that of the Sun, how many times higher is the star's luminosity than that of the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125) If a star has a radius 2 times larger than the Sun's and a luminosity 1/4th that of the Sun, how many times higher is the star's temperature than that of the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125) If a star has a surface temperature 2 times lower than the Sun's and a luminosity the same as the Sun, how many times larger is the star than the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125)arrow_forward
- Zebulon is a binary star system composed of a 10 M sun main sequence star and a 1 M sun red giant. Is this strange? yes or no. explain the reasoning.arrow_forwardThe lowest mass for a true star is 1/12 the mass of the sun. What is the luminosity of this star (in units of the sun’s luminosity) based upon mass luminosity relationship? Use the exponent of 4 for easy calculations instead of 3.9arrow_forwardWhat star is a white dwarf that is much more dim and hotter than the sun. and which type of stars undergo nuclear fusion?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax