Concept explainers
(a)
The brightness of the star Betelgeuse in terms of a fraction of the Sun’s brightness. It is given that Betelgeuse is transformed from a red supergiant to a Type II supernova at the distance of 425 ly from Earth.
(a)

Answer to Problem 62Q
Solution:
Explanation of Solution
Given data:
The distance of the star from Earth is
Formula used:
The expression for apparent magnitude of a supernova is,
Here,
The expression for ratio of brightness of two objects is,
Here,
Explanation:
Convert the distance from light years to parsec as follows:
Therefore, the provided distance of the star from Earth in parsecs is,
Write the formula for apparent magnitude of Type II supernova.
The absolute magnitude for Type II supernova is
The apparent magnitude of the Sun is
Write the expression for the brightness ratio of Betelgeuse and Sun.
Here, the subscript S refers to the corresponding quantities for the Sun and b is the brightness of Betelgeuse.
Substitute
Conclusion:
So, the supernova is
(b)
The comparison between the brightness of the supernova and that of Venus. It is given that it is transformed from a red supergiant to Type II supernova at the distance of 425 ly from Earth and the brightness of Venus is
(b)

Answer to Problem 62Q
Solution:
The ratio of the brightness of the supernova to that of Venus is 710.
Explanation of Solution
Given data:
The brightness of Venus is
The distance of the star from Earth is
Formula used:
The expression for apparent magnitude of a supernova is,
Here,
The expression for the ratio of brightness of two objects is,
Here,
Explanation:
Refer to part (a). The brightness of the star with respect to that of the Sun is
In order to compare the brightness of the star with that of Venus, determine the ratio of their respective brightness (relative to the Sun), that is,
Substitute
Conclusion:
So, the supernova is 710 times brighter than Venus.
Want to see more full solutions like this?
Chapter 20 Solutions
EBK LOOSE-LEAF VERSION OF UNIVERSE
- Pls help asaparrow_forwardPls help asaparrow_forward3. If the force of gravity stopped acting on the planets in our solar system, what would happen? a) They would spiral slowly towards the sun. b) They would continue in straight lines tangent to their orbits. c) They would continue to orbit the sun. d) They would fly straight away from the sun. e) They would spiral slowly away from the sun. 4. 1 The free-body diagram of a wagon being pulled along a horizontal surface is best represented by A F N B C 0 Ꭰ FN E a) A b) B c) C app app The app 10 app d) e) ס ח D E 10 apparrow_forward
- The acceleration of an object sliding along a frictionless ramp is inclined at an angle 0 is 9. a) g tano b) g cose c) g sino 10. d) g e) zero A 1.5 kg cart is pulled with a force of 7.3 N at an angle of 40° above the horizontal. If a kinetic friction force of 3.2 N acts against the motion, the cart's acceleration along the horizontal surface will be a) 5.0 m/s² b) 1.6 m/s² c) 2.4 m/s² 11. d) 1.0 m/s² e) 2.7 m/s² What is the net force acting on an object with a mass of 10 kg moving at a constant velocity of 10 m/s [North]? a) 100 N [North] b) 100 N [South] 10 N [North} d) 10 N [South] e) None of these.arrow_forwardModified True/False - indicate whether the sentence or statement is true or false. If the statement is false, correct the statement to make it true. 12. An object in uniform circular motion has a constant velocity while experiencing centripetal acceleration. 13. An object travelling in uniform circular motion experiences an outward centrifugal force that tends to pull the object out of the circular path. 14. An object with less inertia can resist changes in motion more than an object with more inertia. 15. For an object sliding on a horizontal surface with a horizontal applied force, the frictional force will always increase as the applied force increases.arrow_forwardPls help asaparrow_forward
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





