EBK LOOSE-LEAF VERSION OF UNIVERSE
11th Edition
ISBN: 9781319227975
Author: KAUFMANN
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 15Q
To determine
The data required for the calculation of the age of a planetary nebula. Also, determine the way in which it should be used and observed.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
White Dwarf Size II. The white dwarf, Sirius B, contains 0.98 solar mass, and its density is about 2 x 106 g/cm?. Find the radius of the white dwarf in km to three significant digits. (Hint: Density = mass/volume, and the volume of a
4
sphere is Tr.)
3
km
Compare your answer with the radii of the planets listed in the Table A-10. Which planet is this white dwarf is closely equal to in size?
I Table A-10 I Properties of the Planets
ORBITAL PROPERTIES
Semimajor Axis (a)
Orbital Period (P)
Average Orbital
Velocity (km/s)
Orbital
Inclination
Planet
(AU)
(106 km)
(v)
(days)
Eccentricity
to Ecliptic
Mercury
0.387
57.9
0.241
88.0
47.9
0.206
7.0°
Venus
0.723
108
0.615
224.7
35.0
0.007
3.4°
Earth
1.00
150
1.00
365.3
29.8
0.017
Mars
1.52
228
1.88
687.0
24.1
0.093
1.8°
Jupiter
5.20
779
11.9
4332
13.1
0.049
1.30
Saturn
9.58
1433
29.5
10,759
9.7
0.056
2.5°
30,799
60,190
Uranus
19.23
2877
84.3
6.8
0.044
0.8°
Neptune
* By definition.
30.10
4503
164.8
5.4
0.011
1.8°
PHYSICAL PROPERTIES (Earth = e)…
The place on the H–R diagram where contracting protostars first become visible is
a.
the horizontal branch.
b.
the instability strip.
c.
the birth line.
d.
the zero-age main sequence.
e.
none of the above.
Ideas of a content for a vlog which shows the star life cycle, thank you!
Chapter 20 Solutions
EBK LOOSE-LEAF VERSION OF UNIVERSE
Ch. 20 - Prob. 1CCCh. 20 - Prob. 2CCCh. 20 - Prob. 3CCCh. 20 - Prob. 4CCCh. 20 - Prob. 5CCCh. 20 - Prob. 6CCCh. 20 - Prob. 7CCCh. 20 - Prob. 8CCCh. 20 - Prob. 9CCCh. 20 - Prob. 10CC
Ch. 20 - Prob. 11CCCh. 20 - Prob. 12CCCh. 20 - Prob. 13CCCh. 20 - Prob. 14CCCh. 20 - Prob. 15CCCh. 20 - Prob. 16CCCh. 20 - Prob. 17CCCh. 20 - Prob. 18CCCh. 20 - Prob. 1QCh. 20 - Prob. 2QCh. 20 - Prob. 3QCh. 20 - Prob. 4QCh. 20 - Prob. 5QCh. 20 - Prob. 6QCh. 20 - Prob. 7QCh. 20 - Prob. 8QCh. 20 - Prob. 9QCh. 20 - Prob. 10QCh. 20 - Prob. 11QCh. 20 - Prob. 12QCh. 20 - Prob. 13QCh. 20 - Prob. 14QCh. 20 - Prob. 15QCh. 20 - Prob. 16QCh. 20 - Prob. 17QCh. 20 - Prob. 18QCh. 20 - Prob. 19QCh. 20 - Prob. 20QCh. 20 - Prob. 21QCh. 20 - Prob. 22QCh. 20 - Prob. 23QCh. 20 - Prob. 24QCh. 20 - Prob. 25QCh. 20 - Prob. 26QCh. 20 - Prob. 27QCh. 20 - Prob. 28QCh. 20 - Prob. 29QCh. 20 - Prob. 30QCh. 20 - Prob. 31QCh. 20 - Prob. 32QCh. 20 - Prob. 33QCh. 20 - Prob. 34QCh. 20 - Prob. 35QCh. 20 - Prob. 36QCh. 20 - Prob. 37QCh. 20 - Prob. 38QCh. 20 - Prob. 39QCh. 20 - Prob. 40QCh. 20 - Prob. 41QCh. 20 - Prob. 42QCh. 20 - Prob. 43QCh. 20 - Prob. 44QCh. 20 - Prob. 45QCh. 20 - Prob. 46QCh. 20 - Prob. 47QCh. 20 - Prob. 48QCh. 20 - Prob. 49QCh. 20 - Prob. 50QCh. 20 - Prob. 51QCh. 20 - Prob. 52QCh. 20 - Prob. 53QCh. 20 - Prob. 54QCh. 20 - Prob. 55QCh. 20 - Prob. 56QCh. 20 - Prob. 57QCh. 20 - Prob. 58QCh. 20 - Prob. 59QCh. 20 - Prob. 60QCh. 20 - Prob. 61QCh. 20 - Prob. 62QCh. 20 - Prob. 63QCh. 20 - Prob. 64QCh. 20 - Prob. 65QCh. 20 - Prob. 66QCh. 20 - Prob. 67QCh. 20 - Prob. 68QCh. 20 - Prob. 69QCh. 20 - Prob. 70QCh. 20 - Prob. 71QCh. 20 - Prob. 72QCh. 20 - Prob. 73QCh. 20 - Prob. 74QCh. 20 - Prob. 75Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Which of the following statements is/are true regarding a nebula? Which of the following statements is/are true regarding a nebula? It is believed that each planet in our solar system began as its own nebula. Over time, a nebula becomes cooler and grows in size. The density of a nebula is greatest at the edges and least in the center. There are no nebulas left in our galaxy because they have all formed stars and planets. Over time, a star will form at the center of a nebula.arrow_forwardH5. A star with mass 1.05 M has a luminosity of 4.49 × 1026 W and effective temperature of 5700 K. It dims to 4.42 × 1026 W every 1.39 Earth days due to a transiting exoplanet. The duration of the transit reveals that the exoplanet orbits at a distance of 0.0617 AU. Based on this information, calculate the radius of the planet (expressed in Jupiter radii) and the minimum inclination of its orbit to our line of sight. Follow up observations of the star in part reveal that a spectral feature with a rest wavelength of 656 nm is redshifted by 1.41×10−3 nm with the same period as the observed transit. Assuming a circular orbit what can be inferred about the planet’s mass (expressed in Jupiter masses)?arrow_forward1. A planetary nebula has an angular diameter of 76 arc seconds and a distance of 5100 ly. What is its linear diameter (in ly)? Hint: Use the small-angle formula: angular diameter (in arc seconds) 2.06 ✕ 105 = linear diameter distance 2. Suppose a planetary nebula is 3.2 pc in diameter, and Doppler shifts in its spectrum show that the planetary nebula is expanding at 31 km/s. How old is the planetary nebula in yr? (Note: 1 pc = 3.1 ✕ 1013 km and 1 yr = 3.2 ✕ 107 s.)arrow_forward
- . The radius of the nebula is about 0.401 light-years. The gas is expanding away from the star at a rate of about 37 kilometers/second . Considering that distance = velocity x time, calculate how long ago the gas left the star if its speed has been constant the whole time. Make sure you use consistent units for time, speed, and distance. Answer in years.arrow_forwardA planetary nebula expands at 32 km/s. How far will it expand (in km) in 0.6 million years?arrow_forwardPlease give answer. Describe, with the aid of suitable diagrams, the basic structure and components of the ATLAS detector at the LHC.arrow_forward
- A) A typical dust grain has a radius of about 0.1 micrometers and a mass of 10-14 grams. Roughly how many dust particles are in a cloud containing 1000 Msun of dusty gas if 1% of the cloud's mass is in the form of dust grains? B) What surface area would be covered by these grains if you put them side by side? Assume these grains are spherical. Answer in square light-years. C) Estimate the total surface area covered by the cloud assuming it's matter density is like that of a typical molecular cloud, about 10-21 g/cm3 (Hint: first calculate the clouds volume from it's mass and density, then determine its radius using the formula for volume of a sphere) Answer in square light-years. D) Comparing all above answers, What are the chances (very roughly) that a photon passing through the cloud will hit a dust grain?arrow_forwardc) The star may be assumed to evolve with effective temperature, Teff, remaining constant. Show that the time, t₁, taken by such a star to evolve from a large radius to some smaller radius, R₁, is given by where L₁ is the luminosity when the star has radius R₁. t₁ = GM² 7L₁R₁'arrow_forwardPlace the following events in the formation of stars in the proper chronological sequence, with the oldest first and the youngest last. w. the gas and dust in the nebula flatten to a disk shape due to gravity and a steadily increasing rate of angular rotation x. a star emerges when the mass is great enough and the temperature is high enough to trigger thermonuclear fusion in the core y. the rotation of the nebular cloud increases as gas and dust concentrates by gravity within the growing protostar in the center z. some force, perhaps from a nearby supernova, imparts a rotation to a nebular cloud y, then z, then w, then x z, then y, then w, then x w, then y, then z, then x z, then x, then w, then y x, then z, then y, then w MacBook Air on .H. O O O Oarrow_forward
- Outline the process of star formation, including all relevant factors that influence the outcome.arrow_forwardWhat is the escape velocity (in km/s) from the surface of a 1.5 M neutron star? From a 3.0 M neutron star? (Hint: Use the formula for escape velocity, Ve = 2GM r ; make sure to express quantities in units of meters, kilograms, and seconds. Assume a neutron star has a radius of 11 km and assume the mass of the Sun is 1.99 ✕ 1030 kg.) 1.5 M neutron star km/s3.0 M neutron star km/sarrow_forward7. Why does a solar nebula flatten into a disk instead of a sphere, even though the gravity of a nebula pulls in all directions?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning