EBK LOOSE-LEAF VERSION OF UNIVERSE
11th Edition
ISBN: 9781319227975
Author: KAUFMANN
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 11Q
To determine
The reasoning with which an astronomer can differentiate between planetary nebula and a planet.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the relationship between the color of a reflection nebula and the color of the star that illuminates it?
Which of the following statements is/are true regarding a nebula?
Which of the following statements is/are true regarding a nebula?
It is believed that each planet in our solar system began as its own nebula.
Over time, a nebula becomes cooler and grows in size.
The density of a nebula is greatest at the edges and least in the center.
There are no nebulas left in our galaxy because they have all formed stars and planets.
Over time, a star will form at the center of a nebula.
If our Sun were surrounded by a cloud of gas, would this cloud
be an emission nebula? Why or why not?
Chapter 20 Solutions
EBK LOOSE-LEAF VERSION OF UNIVERSE
Ch. 20 - Prob. 1CCCh. 20 - Prob. 2CCCh. 20 - Prob. 3CCCh. 20 - Prob. 4CCCh. 20 - Prob. 5CCCh. 20 - Prob. 6CCCh. 20 - Prob. 7CCCh. 20 - Prob. 8CCCh. 20 - Prob. 9CCCh. 20 - Prob. 10CC
Ch. 20 - Prob. 11CCCh. 20 - Prob. 12CCCh. 20 - Prob. 13CCCh. 20 - Prob. 14CCCh. 20 - Prob. 15CCCh. 20 - Prob. 16CCCh. 20 - Prob. 17CCCh. 20 - Prob. 18CCCh. 20 - Prob. 1QCh. 20 - Prob. 2QCh. 20 - Prob. 3QCh. 20 - Prob. 4QCh. 20 - Prob. 5QCh. 20 - Prob. 6QCh. 20 - Prob. 7QCh. 20 - Prob. 8QCh. 20 - Prob. 9QCh. 20 - Prob. 10QCh. 20 - Prob. 11QCh. 20 - Prob. 12QCh. 20 - Prob. 13QCh. 20 - Prob. 14QCh. 20 - Prob. 15QCh. 20 - Prob. 16QCh. 20 - Prob. 17QCh. 20 - Prob. 18QCh. 20 - Prob. 19QCh. 20 - Prob. 20QCh. 20 - Prob. 21QCh. 20 - Prob. 22QCh. 20 - Prob. 23QCh. 20 - Prob. 24QCh. 20 - Prob. 25QCh. 20 - Prob. 26QCh. 20 - Prob. 27QCh. 20 - Prob. 28QCh. 20 - Prob. 29QCh. 20 - Prob. 30QCh. 20 - Prob. 31QCh. 20 - Prob. 32QCh. 20 - Prob. 33QCh. 20 - Prob. 34QCh. 20 - Prob. 35QCh. 20 - Prob. 36QCh. 20 - Prob. 37QCh. 20 - Prob. 38QCh. 20 - Prob. 39QCh. 20 - Prob. 40QCh. 20 - Prob. 41QCh. 20 - Prob. 42QCh. 20 - Prob. 43QCh. 20 - Prob. 44QCh. 20 - Prob. 45QCh. 20 - Prob. 46QCh. 20 - Prob. 47QCh. 20 - Prob. 48QCh. 20 - Prob. 49QCh. 20 - Prob. 50QCh. 20 - Prob. 51QCh. 20 - Prob. 52QCh. 20 - Prob. 53QCh. 20 - Prob. 54QCh. 20 - Prob. 55QCh. 20 - Prob. 56QCh. 20 - Prob. 57QCh. 20 - Prob. 58QCh. 20 - Prob. 59QCh. 20 - Prob. 60QCh. 20 - Prob. 61QCh. 20 - Prob. 62QCh. 20 - Prob. 63QCh. 20 - Prob. 64QCh. 20 - Prob. 65QCh. 20 - Prob. 66QCh. 20 - Prob. 67QCh. 20 - Prob. 68QCh. 20 - Prob. 69QCh. 20 - Prob. 70QCh. 20 - Prob. 71QCh. 20 - Prob. 72QCh. 20 - Prob. 73QCh. 20 - Prob. 74QCh. 20 - Prob. 75Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the Orion Nebula is 8 pc in diameter and has a density of about 6.0 108 hydrogen atoms/m3, what is its total mass? (Notes: The volume of a sphere is 43r3; 1 pc = 3.1 1016 m; the mass of a hydrogen atom is 1.7 1027 kg.)arrow_forwardWhat is a planetary nebula? Will we have one around the Sun?arrow_forwardArrange the following stars in order of their evolution: A. A star with no nuclear reactions going on in the core, which is made primarily of carbon and oxygen. B. A star of uniform composition from center to surface; it contains hydrogen but has no nuclear reactions going on in the core. C. A star that is fusing hydrogen to form helium in its core. D. A star that is fusing helium to carbon in the core and hydrogen to helium in a shell around the core. E. A star that has no nuclear reactions going on in the core but is fusing hydrogen to form helium in a shell around the core.arrow_forward
- Describe each of the following nebulae and how they can be observed: HIlI region Cold hydrogen gas Dust cloudsarrow_forwardThe Orion Nebula is about 20 light-years (20 × 1018 cm) across, enclosing a roughly spherical area with a volume of 4.19 × 1057 cm3. Calculate the number of 0.1 solar mass stars that might be formed in such a nebula. Assume that the nebula has a density of 1000 atoms/cm3.arrow_forwardWhite Dwarf Size II. The white dwarf, Sirius B, contains 0.98 solar mass, and its density is about 2 x 106 g/cm?. Find the radius of the white dwarf in km to three significant digits. (Hint: Density = mass/volume, and the volume of a 4 sphere is Tr.) 3 km Compare your answer with the radii of the planets listed in the Table A-10. Which planet is this white dwarf is closely equal to in size? I Table A-10 I Properties of the Planets ORBITAL PROPERTIES Semimajor Axis (a) Orbital Period (P) Average Orbital Velocity (km/s) Orbital Inclination Planet (AU) (106 km) (v) (days) Eccentricity to Ecliptic Mercury 0.387 57.9 0.241 88.0 47.9 0.206 7.0° Venus 0.723 108 0.615 224.7 35.0 0.007 3.4° Earth 1.00 150 1.00 365.3 29.8 0.017 Mars 1.52 228 1.88 687.0 24.1 0.093 1.8° Jupiter 5.20 779 11.9 4332 13.1 0.049 1.30 Saturn 9.58 1433 29.5 10,759 9.7 0.056 2.5° 30,799 60,190 Uranus 19.23 2877 84.3 6.8 0.044 0.8° Neptune * By definition. 30.10 4503 164.8 5.4 0.011 1.8° PHYSICAL PROPERTIES (Earth = e)…arrow_forward
- The figure below shows the radial velocity of a star plotted as a function of time over the course of 20 days. Where is the planet in its orbit around the star when the star's radial velocity is 18 km/s? How do I determine this?arrow_forwardThe brightness of a "young" star sometimes increases and decreases as a result of regional areas of "hot" and "cold" on the star's surface as well as variations in the density of the star's planet-forming debris, which can obstruct light. Suppose that for a particular star, the average magnitude (measure of brightness) is 4.3 with a variation of ±0.31 (on the magnitude scale, brighter objects have a smaller magnitude than dimmer objects). Furthermore, the magnitude of a star is initially observed to be 4.61, and the time between minimum brightness and maximum brightness is 6.4 days. Write a simple harmonic motion model to describe the magnitude Mof the star for day t.arrow_forwardMost stars (Main sequence) generate light through the same mechanism. Because of this, there is an empirical relation between their mass, M, and their Luminosity, L. This relation could be written in the form L/Lsun = (M/Msun, This relation is shown in the log-log diagram below. Find the value of a and round it to the nearest integer. 10 104 102 10-2 10-4 0.1 1.0 2.0 0.2 0.5 5.0 10.0 20.0 Mam (solar masses) Luminosty (solar units)arrow_forward
- If the hottest star in the Carina Nebula has a surface temperature of 51,000 K, at what wavelength (in nm) does it radiate the most energy? Hint: Use Wien's law: ?max = 2.90 ✕ 106 nm · K T How does that compare with 91.2 nm, the wavelength of photons with just enough energy to ionize hydrogen? -The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen. -The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen. -The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen. -The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen.arrow_forwardWhich statement is most logical? a First stars are thought to have been more massive than Sun because the materials used to make clouds were more abundant at the beginning b First stars are thought to have been more massive than Sun because the temperatures of the clouds that made them were higher because they consisted entirely of hydrogen and helium c First stars are thought to have been more massive than Sun because star-forming clouds were much denser early in time d First stars are thought to have been more massive than Sun because the clouds that made them were much more massivearrow_forwardWhy was the nebular hypothesis never fully accepted by astronomers of the day?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning