
Concept explainers
(a)
Interpretation:
The acetal and hemiacetal in isomaltose should be labeled.
Concept Introduction:
In a hemiacetal, an alcohol and ether attached to the same carbon.
A hemiacetal with an alcohol forms an acetal.
(b)
Interpretation:
The monosaccharide ring should be numbered.
Concept Introduction:
Monosaccharides or simple sugars are the simplest carbohydrates. Generally, have three to six carbon atoms in a chain, with a carbonyl group at either the terminal carbon, numbered C1, or the carbon adjacent to it, numbered C2.
(c)
Interpretation:
Glycosidic linkage needs to be classified as a or β and its location should be designated using numbers.
Concept Introduction:
Disaccharides are carbohydrates composed of two monosaccharides.
Disaccharides are acetals, compounds that contain two alkoxy groups (OR groups) bonded to the same carbon.
A disaccharide results when a hemiacetal of one monosaccharide reacts with a hydroxyl group of a second monosaccharide to form an acetal. The new C-O bond that joins the two rings together is called a glycosidic linkage.
The two monosaccharide rings may be five-membered or six-membered. All disaccharides contain at least one acetal that joins the rings together. Each ring is numbered beginning at the anomeric carbon, the carbon in each ring bonded to two oxygen atoms
An a glycoside has the glycosidic linkage oriented down, below the plane of the ring that contains the acetal joining the monosaccharides.
A β glycoside has the glycosidic linkage oriented up, above the plane of the ring that contains the acetal joining the monosaccharides.
(d)
Interpretation:
Whether the hemiacetal drawn is n a or β anomer should be predicted.
Concept Introduction:
Anomers are cyclic monosaccharides or glycosides that are epimers, differing from each other in the configuration of C-1 if they are aldoses or in the configuration at C-2 if they are ketoses. The epimeric carbon in anomers is known as anomeric carbon or anomeric center.
Depending on the orientation of carbon number 1 when the carbon number 5 hydroxyl bonds to it, two different forms can result.
These two forms are identical except for the configuration around C1. These two forms are called anomers.
C1 is called the anomeric carbon. If the hydroxyl group on C1 and the -CH2OH group on C5 are on opposite sides of the six-membered ring, C1 is known to be the α anomer.
If they are on the same side, C1 is known to be the β anomer.
(e)
Interpretation:
The monosaccharide formed, when isomaltose is hydrolyzed should be predicted.
Concept Introduction:
Disaccharides are carbohydrates composed of two monosaccharides.
Disaccharides are acetals, compounds that contain two alkoxy groups (OR groups) bonded to the same carbon.
A disaccharide results when a hemiacetal of one monosaccharide reacts with a hydroxyl group of a second monosaccharide to form an acetal. The new C-O bond that joins the two rings together is called a glycosidic linkage.
The two monosaccharide rings may be five-membered or six-membered. All disaccharides contain at least one acetal that joins the rings together. Each ring is numbered beginning at the anomeric carbon, the carbon in each ring bonded to two oxygen atoms.
The hydrolysis of a disaccharide cleaves the C-O glycosidic linkage and forms two monosaccharides.

Want to see the full answer?
Check out a sample textbook solution
Chapter 20 Solutions
General, Organic, & Biological Chemistry
- Identify and provide a concise explanation of the concept of signal-to-noise ratio (SNR) in the context of chemical analysis. Provide specific examples.arrow_forwardIdentify and provide a concise explanation of a specific analytical instrument capable of detecting and quantifying trace compounds in food samples. Emphasise the instrumental capabilities relevant to trace compound analysis in the nominated food. Include the specific application name (eg: identification and quantification of mercury in salmon), outline a brief description of sample preparation procedures, and provide a summary of the obtained results from the analytical process.arrow_forwardIdentify and provide an explanation of what 'Seperation Science' is. Also describe its importance with the respect to the chemical analysis of food. Provide specific examples.arrow_forward
- 5. Propose a Synthesis for the molecule below. You may use any starting materials containing 6 carbons or less (reagents that aren't incorporated into the final molecule such as PhзP do not count towards this total, and the starting material can have whatever non-carbon functional groups you want), and any of the reactions you have learned so far in organic chemistry I, II, and III. Your final answer should show each step separately, with intermediates and conditions clearly drawn. H3C CH3arrow_forwardState the name and condensed formula of isooxazole obtained by reacting acetylacetone and hydroxylamine.arrow_forwardState the name and condensed formula of the isothiazole obtained by reacting acetylacetone and thiosemicarbazide.arrow_forward
- Provide the semi-developed formula of isooxazole obtained by reacting acetylacetone and hydroxylamine.arrow_forwardGiven a 1,3-dicarbonyl compound (R1-CO-CH2-CO-R2), indicate the formula of the compound obtaineda) if I add hydroxylamine (NH2OH) to give an isooxazole.b) if I add thiosemicarbazide (NH2-CO-NH-NH2) to give an isothiazole.arrow_forwardAn orange laser has a wavelength of 610 nm. What is the energy of this light?arrow_forward
- The molar absorptivity of a protein in water at 280 nm can be estimated within ~5-10% from its content of the amino acids tyrosine and tryptophan and from the number of disulfide linkages (R-S-S-R) between cysteine residues: Ε280 nm (M-1 cm-1) ≈ 5500 nTrp + 1490 nTyr + 125 nS-S where nTrp is the number of tryptophans, nTyr is the number of tyrosines, and nS-S is the number of disulfide linkages. The protein human serum transferrin has 678 amino acids including 8 tryptophans, 26 tyrosines, and 19 disulfide linkages. The molecular mass of the most dominant for is 79550. Predict the molar absorptivity of transferrin. Predict the absorbance of a solution that’s 1.000 g/L transferrin in a 1.000-cm-pathlength cuvet. Estimate the g/L of a transferrin solution with an absorbance of 1.50 at 280 nm.arrow_forwardIn GC, what order will the following molecules elute from the column? CH3OCH3, CH3CH2OH, C3H8, C4H10arrow_forwardBeer’s Law is A = εbc, where A is absorbance, ε is the molar absorptivity (which is specific to the compound and wavelength in the measurement), and c is concentration. The absorbance of a 2.31 × 10-5 M solution of a compound is 0.822 at a wavelength of 266 nm in a 1.00-cm cell. Calculate the molar absorptivity at 266 nm.arrow_forward
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning





