Concept explainers
a) Acrylonitrile, C3H3N, which contains a carbon-carbon double bond and a carbon- nitrogen triple bond.
Interpretation:
Structure of acrylonitrile, C3H3N, with a carbon-carbon double bond and a carbon- nitrogen triple bond along with lone pair of electrons is to be drawn.
Concept introduction:
A covalent bond is formed by mutual sharing of two electrons between the atoms, each atom giving one electron for sharing. Such a covalent bond, that is, a pair of shared electrons is represented as a line between the atoms, for example as A-B. The number of covalent bonds formed by an atom depends on the number of electrons that the atom requires for making the octet in its valence shell. Valence electrons that are not used for bonding are called lone-pair of electrons or nonbonding electrons.
Answer to Problem 33AP
Structure of acrylonitrile, C3H3N.
Explanation of Solution
Structure of acrylonitrile, C3H3N, with a carbon-carbon double bond and a carbon- nitrogen triple bond along with lone pair of electrons is required. Carbon with four valence electrons can form four covalent bonds. Nitrogen with five valence electrons can form three covalent bonds while hydrogen with one valence electron an form one covalent bond. There are three carbons in acrylonitrile molecule. Two carbons are joined by a double bond and the third carbon is involved in forming triple bond with nitrogen and a single bond with second carbon. Out of the five valence electrons available, nitrogen has utilized only three electrons in forming the triple bond. Therefore a lone pair of electron remains on nitrogen. The hydrogen atoms are distributed on different carbon atoms depending upon their valence requirements giving the structure as
Structure of acrylonitrile, C3H3N, with a carbon-carbon double bond and a carbon- nitrogen triple bond along with lone pair of electrons.
b) Ethyl methyl ether, C3H8O, which contains an oxygen atom bonded to two carbon atoms
Interpretation:
Structure of ethyl methyl ether, C3H8O, which contains an oxygen atom bonded to two carbon atoms along with lone pair of electrons is to be drawn.
Concept introduction:
A covalent bond is formed by mutual sharing of two electrons between the atoms, each atom giving one electron for sharing. Such a covalent bond, that is, a pair of shared electrons is represented as a line between the atoms, for example as A-B. The number of covalent bonds formed by an atom depends on the number of electrons that the atom requires for making the octet in its valence shell. Valence electrons that are not used for bonding are called lone-pair of electrons or nonbonding electrons.
Answer to Problem 33AP
Structure of ethyl methyl ether, C3H8O, which contains an oxygen atom bonded to two carbon atoms along with lone pair of electrons is
Explanation of Solution
Structure of ethyl methyl ether, C3H8O, with an oxygen atom bonded to two carbon atoms along with lone pair of electrons is required. Carbon with four valence electrons can form four covalent bonds. Oxygen with six valence electrons can form two covalent bonds while hydrogen with one valence electron an form one covalent bond. There are three carbons in ethyl methyl ether molecule. Since the oxygen atom is bonded to two carbon atoms, the third carbon must be attached to any one of the carbons bonded to oxygen atom. Hence the skeleton structure of ethyl methyl ether will be C-C-O-C. Out of the six valence electrons available, oxygen has utilized only two electrons in forming the bonds. Therefore two lone pairs of electrons remain on oxygen atom. The hydrogen atoms are distributed on different carbon atoms depending upon their valence requirements giving the structure as H3C-CH2-O-CH3.
Structure of ethyl methyl ether, C3H8O, which contains an oxygen atom bonded to two carbon atoms along with lone pair of electrons is
c) Butane, C4H10, which contains a chain of four carbon atoms.
Interpretation:
Structure of butane, C4H10, which contains a chain of four carbon atoms along with lone pair of electrons is to be drawn.
Concept introduction:
A covalent bond is formed by mutual sharing of two electrons between the atoms, each atom giving one electron for sharing. Such a covalent bond, that is, a pair of shared electrons is represented as a line between the atoms, for example as A-B. The number of covalent bonds formed by an atom depends on the number of electrons that the atom requires for making the octet in its valence shell. Valence electrons that are not used for bonding are called lone-pair of electrons or nonbonding electrons.
Answer to Problem 33AP
Structure of butane, C4H10.
Explanation of Solution
Structure of butane, C4H10, which contains a chain of four carbon atoms along with lone pair of electrons is
d) Cyclohexene, C6H10, which contains a ring of six carbon atoms and one carbon-carbon double bond.
Interpretation:
Structure of cyclohexene, C6H10, which contains a ring of six carbon atoms and one carbon-carbon double bond along with lone pair of electrons is to be drawn.
Concept introduction:
A covalent bond is formed by mutual sharing of two electrons between the atoms, each atom giving one electron for sharing. Such a covalent bond, that is, a pair of shared electrons is represented as a line between the atoms, for example as A-B. The number of covalent bonds formed by an atom depends on the number of electrons that the atom requires for making the octet in its valence shell. Valence electrons that are not used for bonding are called lone-pair of electrons or nonbonding electrons.
Answer to Problem 33AP
Structure of cyclohexene, C6H10, which contains a ring of six carbon atoms and one carbon-carbon double bond.
Explanation of Solution
Structure of cyclohexene, C6H10, with a ring of six carbon atoms and one carbon-carbon double bond along with lone pair of electrons is required. Carbon with four valence electrons can form four covalent bonds while hydrogen with one valence electron an form only one covalent bond. The carbons are to be arranged in the form a ring with two carbons attached through a double bond and two single bonds and others through four by single bonds. The ten hydrogen atoms are distributed on these six carbons satisfying their valence requirements. Thus no lone pair of electrons remains on either carbon or hydrogen. The structure of cyclohexene is
Want to see more full solutions like this?
Chapter 1 Solutions
Organic Chemistry
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward(11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward
- . 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forwardFive chemistry project topic that does not involve practicalarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Q2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forwardPrint Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfoxarrow_forward
- 10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①arrow_forwardDo the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.arrow_forwardNGLISH b) Identify the bonds present in the molecule drawn (s) above. (break) State the function of the following equipments found in laboratory. Omka) a) Gas mask b) Fire extinguisher c) Safety glasses 4. 60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w 80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions (S-32.0.0-16.0) (3 m 5. In an experiment, a piece of magnesium ribbon was cleaned with steel w clean magnesium ribbon was placed in a crucible and completely burnt in oxy cooling the product weighed 4.0g a) Explain why it is necessary to clean magnesium ribbon. Masterclass Holiday assignmen PB 2arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning