Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977237
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18.2, Problem 18.100P
To determine
(a)
The force exerted at
The force exerted by
To determine
(b)
The couple.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An experimental Fresnel-lens solar-energy concentrator can rotate about the horizontal axis AB that passes through its mass center G. It is supported at A and B by a steel framework that can rotate about the vertical y axis. The concentrator has a mass of 30 Mg, a radius of gyration of 12 m about its axis of symmetry CD, and a radius of gyration of 10 m about any transverse axis through G. Knowing that the angular velocities w1 and w2 have constant magnitudes equal to 0.20 rad/s and 0.25 rad/s, respectively, determine for the position 0= 60° (a) the forces exerted on the concentrator at A and B, (b)the couple M2k applied to the concentrator at that instant.
A yoyo is constructed by attaching three uniform, solid disks along their central axes as shown. The two outer disks are identical, each with mass M = 58 g, radius R = 3.3 cm, and moment of inertia 1/2MR2. The central, smaller disk has mass M/2 and radius R/2. A light, flexible string of negligible mass is wrapped counterclockwise around the central disk of the yoyo. The yoyo is then placed on a horizontal tabletop and the string is gently pulled with a constant force F = 0.25 N. The tension in the string is not sufficient to cause the yoyo to leave the tabletop. In this problem consider the two cases show. In Case 1 the string is pulled straight up, perpendicular to the tabletop. In Case 2 the string is pulled horizontally, parallel to the tabletop. In both cases the yoyo rolls without slipping.
In both the cases shown what is the magnitude of the tourqe t excerted by the string about the contact point of the yo-yo wiith the table in N*m.
What is the moment of intertia of the yo-yo…
I need the answer as soon as possible
Chapter 18 Solutions
Vector Mechanics For Engineers
Ch. 18.1 - Prob. 18.1PCh. 18.1 - Prob. 18.2PCh. 18.1 - Prob. 18.3PCh. 18.1 - A homogeneous disk of weight W=6 lb rotates at the...Ch. 18.1 - Prob. 18.5PCh. 18.1 - A solid rectangular parallelepiped of mass m has a...Ch. 18.1 - Solve Prob. 18.6, assuming that the solid...Ch. 18.1 - Prob. 18.8PCh. 18.1 - Determine the angular momentum HD of the disk of...Ch. 18.1 - Prob. 18.10P
Ch. 18.1 - Prob. 18.11PCh. 18.1 - Prob. 18.12PCh. 18.1 - Prob. 18.13PCh. 18.1 - Prob. 18.14PCh. 18.1 - Prob. 18.15PCh. 18.1 - For the assembly of Prob. 18.15, determine (a) the...Ch. 18.1 - Prob. 18.17PCh. 18.1 - Determine the angular momentum of the shaft of...Ch. 18.1 - Prob. 18.19PCh. 18.1 - Prob. 18.20PCh. 18.1 - Prob. 18.21PCh. 18.1 - Prob. 18.22PCh. 18.1 - Prob. 18.23PCh. 18.1 - Prob. 18.24PCh. 18.1 - Prob. 18.25PCh. 18.1 - Prob. 18.26PCh. 18.1 - Prob. 18.27PCh. 18.1 - Prob. 18.28PCh. 18.1 - Prob. 18.29PCh. 18.1 - Prob. 18.30PCh. 18.1 - Prob. 18.31PCh. 18.1 - Prob. 18.32PCh. 18.1 - Prob. 18.33PCh. 18.1 - Prob. 18.34PCh. 18.1 - Prob. 18.35PCh. 18.1 - Prob. 18.36PCh. 18.1 - Prob. 18.37PCh. 18.1 - Prob. 18.38PCh. 18.1 - Prob. 18.39PCh. 18.1 - Prob. 18.40PCh. 18.1 - Prob. 18.41PCh. 18.1 - Prob. 18.42PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Prob. 18.44PCh. 18.1 - Prob. 18.45PCh. 18.1 - Prob. 18.46PCh. 18.1 - Prob. 18.47PCh. 18.1 - Prob. 18.48PCh. 18.1 - Prob. 18.49PCh. 18.1 - Prob. 18.50PCh. 18.1 - Prob. 18.51PCh. 18.1 - Prob. 18.52PCh. 18.1 - Determine the kinetic energy of the space probe of...Ch. 18.1 - Prob. 18.54PCh. 18.2 - Determine the rate of change H.G of the angular...Ch. 18.2 - Prob. 18.56PCh. 18.2 - Determine the rate of change H.G of the angular...Ch. 18.2 - Prob. 18.58PCh. 18.2 - Prob. 18.59PCh. 18.2 - Prob. 18.60PCh. 18.2 - Prob. 18.61PCh. 18.2 - Prob. 18.62PCh. 18.2 - Prob. 18.63PCh. 18.2 - Prob. 18.64PCh. 18.2 - A slender, uniform rod AB of mass m and a vertical...Ch. 18.2 - A thin, homogeneous triangular plate of weight 10...Ch. 18.2 - Prob. 18.67PCh. 18.2 - Prob. 18.68PCh. 18.2 - Prob. 18.69PCh. 18.2 - Prob. 18.70PCh. 18.2 - Prob. 18.71PCh. 18.2 - Prob. 18.72PCh. 18.2 - Prob. 18.73PCh. 18.2 - Prob. 18.74PCh. 18.2 - Prob. 18.75PCh. 18.2 - Prob. 18.76PCh. 18.2 - Prob. 18.77PCh. 18.2 - Prob. 18.78PCh. 18.2 - Prob. 18.79PCh. 18.2 - Prob. 18.80PCh. 18.2 - Prob. 18.81PCh. 18.2 - Prob. 18.82PCh. 18.2 - Prob. 18.83PCh. 18.2 - Prob. 18.84PCh. 18.2 - Prob. 18.85PCh. 18.2 - Prob. 18.86PCh. 18.2 - Prob. 18.87PCh. 18.2 - Prob. 18.88PCh. 18.2 - Prob. 18.89PCh. 18.2 - The slender rod AB is attached by a clevis to arm...Ch. 18.2 - The slender rod AB is attached by a clevis to arm...Ch. 18.2 - Prob. 18.92PCh. 18.2 - The 10-oz disk shown spins at the rate 1=750 rpm,...Ch. 18.2 - Prob. 18.94PCh. 18.2 - Prob. 18.95PCh. 18.2 - Prob. 18.96PCh. 18.2 - Prob. 18.97PCh. 18.2 - Prob. 18.98PCh. 18.2 - Prob. 18.99PCh. 18.2 - Prob. 18.100PCh. 18.2 - Prob. 18.101PCh. 18.2 - Prob. 18.102PCh. 18.2 - Prob. 18.103PCh. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - For the disk of Prob. 18.99, determine (a) the...Ch. 18.2 - Prob. 18.106PCh. 18.3 - Prob. 18.107PCh. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - Prob. 18.109PCh. 18.3 - Prob. 18.110PCh. 18.3 - Prob. 18.111PCh. 18.3 - A solid cone of height 9 in. with a circular base...Ch. 18.3 - Prob. 18.113PCh. 18.3 - Prob. 18.114PCh. 18.3 - Prob. 18.115PCh. 18.3 - Prob. 18.116PCh. 18.3 - Prob. 18.117PCh. 18.3 - Prob. 18.118PCh. 18.3 - Show that for an axisymmetric body under no force,...Ch. 18.3 - Prob. 18.120PCh. 18.3 - Prob. 18.121PCh. 18.3 - Prob. 18.122PCh. 18.3 - Prob. 18.123PCh. 18.3 - Prob. 18.124PCh. 18.3 - Prob. 18.125PCh. 18.3 - Prob. 18.126PCh. 18.3 - Prob. 18.127PCh. 18.3 - Prob. 18.128PCh. 18.3 - An 800-lb geostationary satellite is spinning with...Ch. 18.3 - Solve Prob. 18.129, assuming that the meteorite...Ch. 18.3 - Prob. 18.131PCh. 18.3 - Prob. 18.132PCh. 18.3 - Prob. 18.133PCh. 18.3 - Prob. 18.134PCh. 18.3 - Prob. 18.135PCh. 18.3 - Prob. 18.136PCh. 18.3 - Prob. 18.137PCh. 18.3 - Prob. 18.138PCh. 18.3 - Prob. 18.139PCh. 18.3 - Prob. 18.140PCh. 18.3 - Prob. 18.141PCh. 18.3 - Prob. 18.142PCh. 18.3 - Prob. 18.143PCh. 18.3 - Prob. 18.144PCh. 18.3 - Prob. 18.145PCh. 18.3 - Prob. 18.146PCh. 18 - Prob. 18.147RPCh. 18 - Prob. 18.148RPCh. 18 - A rod of uniform cross-section is used to form the...Ch. 18 - A uniform rod of mass m and length 5a is bent into...Ch. 18 - Prob. 18.151RPCh. 18 - Prob. 18.152RPCh. 18 - A homogeneous disk of weight W=6 lb rotates at the...Ch. 18 - Prob. 18.154RPCh. 18 - Prob. 18.155RPCh. 18 - Prob. 18.156RPCh. 18 - Prob. 18.157RPCh. 18 - Prob. 18.158RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A shaft carries four masses A, B, C and D of magnitude 210 kg, 310 kg, 410 kg and 210 kg respectively and revolving at radii 7 cm, 6 cm, 7 cm and 7.5cm in planes measured from mass A at 30 cm, 40 cm and 70cm. The angular positions of the masses B,C,and D are 450,1150,235° from the mass A. The balancing masses are to be placed in planes X and Y. The distance between the planes A and X is 10cm, between X and Y is 40cm and between Y and is 20 cm. If the balancing masses revolve at a radius of 10cm.Find the magnitude and angular position of mass Yarrow_forward3. An individual does leg curl exercise to strengthen his hamstring muscles. The 3 kg load is located 36 cm from the axis of rotation (the knee joint). The leg weight is 5 kg and the center of mass of the leg is located 20 cm from the knee joint. The radius of gyration about the center of mass of the leg is 14 cm. At the instant shown, the leg is in a horizontal position and is moving counterclockwise with an angular acceleration of a = +4 rad/s² and an angular velocity of w = +3 rad/s² The hamstring muscle inserts 3 cm from the knee joint and is oriented at an angle of 60° with respect to the leg. Treat the 3 kg load as a point mass. Calculate the following: (a) the magnitude of Fm required to cause this motion. (b) the magnitudes of both the tangential and centripetal accelerations of the load. Knee pivot Hamstring muscle Perpendicular distance to pivot Weight force (load) Fm 36 cm 60 knees 5 kg 3 cm 3 kg Answers: a) 890.46 N; b) tangential: 1.44 m/s²; centripetal: 3.24 m/s²arrow_forwardA turbine rotor is found to be out of balance to the extent of 1.5 kg at 0.45 m radius in the plane AA and 2kg at 0.6 m radius in the plane BB, the relative angular positions being given in the end view. It is desired to balance these masses by a mass in each of the planes XX and YY at radii of 0.525m and 0.45m respectively. Determine the magnitude and positions of these masses and show their positions in an end view. (Answer: X, 1.42kg, 209.27 degrees from A; y, 2.12KG, 329.1 degrees from A)arrow_forward
- 2. Mass of the flywheel of a steam engine is 2000 kg and has got radius of gyration of 76 cm. The starting torque of steam engine is 1300 N-m and may be assumed constant. Determine 1. the angular acceleration of flywheel and its 2. kinetic energy after 10 seconds.arrow_forward1 A thin 5m long uniform rod is free to rotate in the plane of the page about a fixed axis at Point A. Point A is 2m from one end of the rod. The mass of the rod is 60kg. a. What is the mass moment of inertia of the rod about Point A? b. If friction is negligible, what is the angular acceleration of the rod when it is at an angle of 50° from horizontal, as shown? gl 9 mass = 60 kg 3 m 50° A stationary 2 marrow_forwardAn aeroplane makes a complete half circle of 50 metres radius, towards left, when flying at 200 km per hour. The rotary engine and the propeller of the plane has a mass of 400 kg with a radius of gyration of 300 mm. The engine runs at 2400 r.p.m. clockwise, when viewed from the rear. Find the gyroscopic couple on the aircraft and state its effect on it. What will be the effect, if the aeroplane turns to its right instead of to the left ?arrow_forward
- I need the answer as soon as possiblearrow_forwardA shaft carries four masses 4, B, C and D are to be completely balanced and revolving at radii 40 mm, 50 mm, 60 mm and 30 mm respectively. The magnitude of masses B, C and D is 10 kg. 18 kg, and 15 kg respectively. The angular position of the masses B, C and D is 60°, 135° and 270° respectively. The magnitude and position of the mass A is. O 50 kg, 93.40 45 kg, 66.40 35 kg, 39.40 Non mentioned 22.66 kg, 304.50 O O O O Carrow_forward3. A simple connecting rod mechanism has a rod 250mm long and a crank radius of 75 mm. The connecting rod has a mass of 1.5kg, its centre of gravity is 75mm from the large end and it has a radius of gyration about the centre of gravity of 100mm. When the crank angle is 30° and the crankshaft speed is 3000rpm clockwise: (a) (i) Show by kinematic analysis that the angular acceleration of the connecting rod is 13,940 rad/s² (clockwise) (ii) Show also that the acceleration of the centre of gravity (C) in the X and Y direction is respectively, fcx = 6759m/s² (to the right) and fcy = 2590.8m/s² (downwards). Hence, find the magnitude and direction of the forces acting on the frame of the engine due to the inertia of the connecting rod as follows: (b) The force exerted by the cylinder wall on the piston at B (c) The force on the main bearing at O (d) The torque input or output at the crank B Figure 3. Connecting rod mechanism C A 30° Oarrow_forward
- 2 An object is made of two identical uniform 3m long rods connected as shown. The total mass of the system is 60kg. The object can rotate in the plane of the page about a fixed axis at Point A. There is a friction moment of 500 N m about point A. a. What is the mass moment of inertia of the object about Point A? b. If the object is released from rest in the orientation shown, what will be is initial angular acceleration? stationary Mf A = total mass= 60 kg 500 Nm 3 m 3 m garrow_forwardI need the answer as soon as possiblearrow_forwardFind the magnitude and position of the balancing mass at a radius of 13cm by using the analytical method. Three masses m1, m2, m3, are attached to a shaft and revolve in the same plane. The masses are 12kg, 10kg, and 15kg respectively and their radii of rotations are 5cm, 6cm, 7cm respectively. The angular position of the masses m2, m3 are 45° and 145° from the mass m1.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Thermal Radiation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=FDmYCI_xYlA;License: Standard youtube license