Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977237
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18.1, Problem 18.16P
For the assembly of Prob. 18.15, determine (a) the angular momentum HB of the assembly about point B, (b) the anole formed by HB and BA.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A solid rectangular parallelepiped of mass m has a square base of side a and a length 2a. Knowing that it rotates at the constant rate v about its diagonal AC’ and that its rotation is observed from A as counterclockwise, determine (a) the magnitude of the angular momentum HG of the parallelepiped about its mass center G, (b) the angle that HG forms with the diagonal AC’.
A slender rod of length l and weight W is pivoted at one end as shown. It is released from rest in a horizontal position and swings freely. (a ) Determine the angular velocity of the rod as it passes through a vertical position and determine the corresponding reaction at the pivot. (b ) Solve part a for W = 1.8 lb and l = 3 ft.
17.56 Show that the system of momenta for a rigid slab in plane mo-
tion reduces to a single vector, and express the distance from the mass cen-
ter G to the line of action of this vector in terms of the centroidal radius of
gyration k of the slab, the magnitude of the velocity of G, and the angular
velocity w.
Chapter 18 Solutions
Vector Mechanics For Engineers
Ch. 18.1 - Prob. 18.1PCh. 18.1 - Prob. 18.2PCh. 18.1 - Prob. 18.3PCh. 18.1 - A homogeneous disk of weight W=6 lb rotates at the...Ch. 18.1 - Prob. 18.5PCh. 18.1 - A solid rectangular parallelepiped of mass m has a...Ch. 18.1 - Solve Prob. 18.6, assuming that the solid...Ch. 18.1 - Prob. 18.8PCh. 18.1 - Determine the angular momentum HD of the disk of...Ch. 18.1 - Prob. 18.10P
Ch. 18.1 - Prob. 18.11PCh. 18.1 - Prob. 18.12PCh. 18.1 - Prob. 18.13PCh. 18.1 - Prob. 18.14PCh. 18.1 - Prob. 18.15PCh. 18.1 - For the assembly of Prob. 18.15, determine (a) the...Ch. 18.1 - Prob. 18.17PCh. 18.1 - Determine the angular momentum of the shaft of...Ch. 18.1 - Prob. 18.19PCh. 18.1 - Prob. 18.20PCh. 18.1 - Prob. 18.21PCh. 18.1 - Prob. 18.22PCh. 18.1 - Prob. 18.23PCh. 18.1 - Prob. 18.24PCh. 18.1 - Prob. 18.25PCh. 18.1 - Prob. 18.26PCh. 18.1 - Prob. 18.27PCh. 18.1 - Prob. 18.28PCh. 18.1 - Prob. 18.29PCh. 18.1 - Prob. 18.30PCh. 18.1 - Prob. 18.31PCh. 18.1 - Prob. 18.32PCh. 18.1 - Prob. 18.33PCh. 18.1 - Prob. 18.34PCh. 18.1 - Prob. 18.35PCh. 18.1 - Prob. 18.36PCh. 18.1 - Prob. 18.37PCh. 18.1 - Prob. 18.38PCh. 18.1 - Prob. 18.39PCh. 18.1 - Prob. 18.40PCh. 18.1 - Prob. 18.41PCh. 18.1 - Prob. 18.42PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Prob. 18.44PCh. 18.1 - Prob. 18.45PCh. 18.1 - Prob. 18.46PCh. 18.1 - Prob. 18.47PCh. 18.1 - Prob. 18.48PCh. 18.1 - Prob. 18.49PCh. 18.1 - Prob. 18.50PCh. 18.1 - Prob. 18.51PCh. 18.1 - Prob. 18.52PCh. 18.1 - Determine the kinetic energy of the space probe of...Ch. 18.1 - Prob. 18.54PCh. 18.2 - Determine the rate of change H.G of the angular...Ch. 18.2 - Prob. 18.56PCh. 18.2 - Determine the rate of change H.G of the angular...Ch. 18.2 - Prob. 18.58PCh. 18.2 - Prob. 18.59PCh. 18.2 - Prob. 18.60PCh. 18.2 - Prob. 18.61PCh. 18.2 - Prob. 18.62PCh. 18.2 - Prob. 18.63PCh. 18.2 - Prob. 18.64PCh. 18.2 - A slender, uniform rod AB of mass m and a vertical...Ch. 18.2 - A thin, homogeneous triangular plate of weight 10...Ch. 18.2 - Prob. 18.67PCh. 18.2 - Prob. 18.68PCh. 18.2 - Prob. 18.69PCh. 18.2 - Prob. 18.70PCh. 18.2 - Prob. 18.71PCh. 18.2 - Prob. 18.72PCh. 18.2 - Prob. 18.73PCh. 18.2 - Prob. 18.74PCh. 18.2 - Prob. 18.75PCh. 18.2 - Prob. 18.76PCh. 18.2 - Prob. 18.77PCh. 18.2 - Prob. 18.78PCh. 18.2 - Prob. 18.79PCh. 18.2 - Prob. 18.80PCh. 18.2 - Prob. 18.81PCh. 18.2 - Prob. 18.82PCh. 18.2 - Prob. 18.83PCh. 18.2 - Prob. 18.84PCh. 18.2 - Prob. 18.85PCh. 18.2 - Prob. 18.86PCh. 18.2 - Prob. 18.87PCh. 18.2 - Prob. 18.88PCh. 18.2 - Prob. 18.89PCh. 18.2 - The slender rod AB is attached by a clevis to arm...Ch. 18.2 - The slender rod AB is attached by a clevis to arm...Ch. 18.2 - Prob. 18.92PCh. 18.2 - The 10-oz disk shown spins at the rate 1=750 rpm,...Ch. 18.2 - Prob. 18.94PCh. 18.2 - Prob. 18.95PCh. 18.2 - Prob. 18.96PCh. 18.2 - Prob. 18.97PCh. 18.2 - Prob. 18.98PCh. 18.2 - Prob. 18.99PCh. 18.2 - Prob. 18.100PCh. 18.2 - Prob. 18.101PCh. 18.2 - Prob. 18.102PCh. 18.2 - Prob. 18.103PCh. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - For the disk of Prob. 18.99, determine (a) the...Ch. 18.2 - Prob. 18.106PCh. 18.3 - Prob. 18.107PCh. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - Prob. 18.109PCh. 18.3 - Prob. 18.110PCh. 18.3 - Prob. 18.111PCh. 18.3 - A solid cone of height 9 in. with a circular base...Ch. 18.3 - Prob. 18.113PCh. 18.3 - Prob. 18.114PCh. 18.3 - Prob. 18.115PCh. 18.3 - Prob. 18.116PCh. 18.3 - Prob. 18.117PCh. 18.3 - Prob. 18.118PCh. 18.3 - Show that for an axisymmetric body under no force,...Ch. 18.3 - Prob. 18.120PCh. 18.3 - Prob. 18.121PCh. 18.3 - Prob. 18.122PCh. 18.3 - Prob. 18.123PCh. 18.3 - Prob. 18.124PCh. 18.3 - Prob. 18.125PCh. 18.3 - Prob. 18.126PCh. 18.3 - Prob. 18.127PCh. 18.3 - Prob. 18.128PCh. 18.3 - An 800-lb geostationary satellite is spinning with...Ch. 18.3 - Solve Prob. 18.129, assuming that the meteorite...Ch. 18.3 - Prob. 18.131PCh. 18.3 - Prob. 18.132PCh. 18.3 - Prob. 18.133PCh. 18.3 - Prob. 18.134PCh. 18.3 - Prob. 18.135PCh. 18.3 - Prob. 18.136PCh. 18.3 - Prob. 18.137PCh. 18.3 - Prob. 18.138PCh. 18.3 - Prob. 18.139PCh. 18.3 - Prob. 18.140PCh. 18.3 - Prob. 18.141PCh. 18.3 - Prob. 18.142PCh. 18.3 - Prob. 18.143PCh. 18.3 - Prob. 18.144PCh. 18.3 - Prob. 18.145PCh. 18.3 - Prob. 18.146PCh. 18 - Prob. 18.147RPCh. 18 - Prob. 18.148RPCh. 18 - A rod of uniform cross-section is used to form the...Ch. 18 - A uniform rod of mass m and length 5a is bent into...Ch. 18 - Prob. 18.151RPCh. 18 - Prob. 18.152RPCh. 18 - A homogeneous disk of weight W=6 lb rotates at the...Ch. 18 - Prob. 18.154RPCh. 18 - Prob. 18.155RPCh. 18 - Prob. 18.156RPCh. 18 - Prob. 18.157RPCh. 18 - Prob. 18.158RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A thin homogeneous square plate of mass m and side a is welded to a vertical shaft AB with which it forms an angle of 45°. Knowing that the shaft rotates with a constant angular velocity o, determine the angular momentum HẠ of the plate about point A. 45° A Вarrow_forwardA slender rod of mass mo and length ; is welded at its idpoint A to the rim of the oslid circular disk of mass m and radius r. the center of the disk, which rolls without slipping, has a velocity v at the instant when A is at the top of the disk with the rod parallel to the ground. For the instant determine the angular momentum of the combined body about OUsing that HO = IDω + IRω + m2vr.arrow_forwardNonearrow_forward
- A thin, homogeneous disk of mass m and radius r spins at the constant rate w about an axle held by a fork-ended vertical rod that rotates at the constant rate w2. Determine the angular momentum HG of the disk about its mass center G.arrow_forwardA 240-lb block is suspended from an inextensible cable which is wrapped around a drum of 1.25-ft radius rigidly attached to a flywheel. The drum and flywheel have a combined centroidal moment of intertia of 10.5 lb-ft-s^2. At the instant shown, the velocity of the block is 6 ft/s directed downward. The bearing at A as a frictional moment of 60 lb-ft. What is the kinetic energy of the system after the block moved after 4ft? (in ft-lb)arrow_forwardThe uniform thin pin-connected bars AB, BC, and CD have masses mÃß = 2.3 kg, mBC = 3.2 kg, and mCD= 5.0 kg, respectively. Letting R = 0.75 m, L = 1.2 m, and H= 1.55 m and knowing that bar AB rotates at a constant angular velocity WAB= 4 rad/s, compute the angular momentum of bar AB about A, of bar BC about A, and bar CD about D at the instant shown. R L B WAB + | Do H The angular momentum of bar AB about A is ( The angular momentum of bar BC about A is ( The angular momentum of bar CD about Dis ( kg.m²/s) k. kg-m²/s) k. kg-m²/s) k.arrow_forward
- If the earth were a sphere, the gravitational attraction of the sun, moon, and planets would at all times be equivalent to a single force R acting at the mass center of the earth. However, the earth is actually an oblate spheroid and the gravitational system acting on the earth is equivalent to a force R and a couple M. Knowing that the effect of the couple M is to cause the axis of the earth to precess about the axis GA at the rate of one revolution in 25 800 years, determine the average magnitude of the couple M applied to the earth. Assume that the average density of the earth is 5.51 g/cm 3 , that the average radius of the earth is 6370 km, and that ( Note: This forced precession is known as the precession of the equinoxes and is not to be confused with the free precession discussed in Prob. 18.123.)arrow_forwardA homogeneous disk of mass m = 4 kg rotates at the constant rate wi = 12 rad/s with respect to arm OA, which itself rotates at the constant rate wz = 4 rad/s about the y- axis, determine: 1. Angular momentum of the disk about point A. 2. Angular momentum of the disk about point O. 3. The force-couple system representing the dynamic reactions at the support. Neglect the mass of of arm OA. 320 min 200 mm T = 100 mmarrow_forwardTwo uniform cylinders, each of weight W = 14 lb and radius r = 5 in., are connected by a belt as shown. If the system is released from rest, determine (a ) the velocity of the center of cylinder A after it has moved through 3 ft, (b) the tension in the portion of belt connecting the two cylinders.arrow_forward
- In the helicopter shown; a vertical tail propeller is used to pre- vent rotation of the cab as the speed of the main blades is changed. Assuming that the tail propeller is not operating determine the final angular velocity of the cab after the speed of the main blades has been changed from I80 to 240 rpm. (The speed of the main blades is measured relative to the cab, and the cab has a centroidal moment of inertia of 650 lb.ft.s2. Each of the four main blades is assumed to be a slender rod 14 ft weighing 55 lb.)arrow_forward4. (20 pts) A concrete block is lifted by a hoisting mechanism in which the cables are securely wrapped around their respective drums. The drums are fastened together and rotate as a single unit at their center of mass O. Combined mass of drum is 150 kg, and radius of gyration at O is 450 mm. A constant tension of 1.8 kN is maintained in the cable by the power unit at A. Determine the vertical acceleration of the block and the resultant force on the bearing at O. 600 mm 300 mm P = 1.8 kN m = 150 kg ko = 450 mm %3D 45° 300 kgarrow_forwardA slender rod of length l is pivoted about a point C located at a distance b from its center G. It is released from rest in a horizontal position and swings freely. Determine (a ) the distance b for which the angular velocity of the rod as it passes through a vertical position is maximum, (b) the corresponding values of its angular velocity and of the reaction at C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
EVERYTHING on Axial Loading Normal Stress in 10 MINUTES - Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=jQ-fNqZWrNg;License: Standard YouTube License, CC-BY