![Introductory Chemistry: A Foundation](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_largeCoverImage.gif)
. Balance each of the following
a.
![Check Mark](/static/check-mark.png)
(a)
Interpretation:
The given half reaction should be balanced in acidic medium.
Concept Introduction:
The oxidation-reduction reaction is also known as a redox reaction. In this reaction, one reactant is oxidized and other is reduced. In balancing an oxidation-reduction reaction, they must be first divided into two half reactions: one is oxidation reaction and other is reduction reaction.
The balancing of redox reaction is complicated as compared to simple balancing. It is necessary to determine the half reactions of reactants undergoing oxidation and reduction. On adding the two half-reactions, net total equation can be obtained. This method of balancing redox reaction is known as half equation method.
The following rules must be followed in balancing redox reaction by half equation method:
- Initially, redox reaction is separated into two half equations; oxidation and reduction.
- Atoms other than hydrogen and oxygen are balanced first in the unbalanced half equations.
- Oxygen atoms are balanced by addition of water on either side of the reaction.
- Hydrogen ion/s is added to balance the hydrogen atom.
- Electrons are added to balance the charge.
- Half reactions are added to get the net total equation.
- The further addition of hydroxide ion takes place on both side of the reaction, if the solution is basic in nature to neutralise the hydrogen ion present in the solution.
Answer to Problem 89AP
Explanation of Solution
The given reaction is as follows:
Separate the two half reactions as follows:
And,
In reaction (1), add 4 water molecules to the right to balance the oxygen atoms,
Add 8 hydrogen ions to the left to balance the number of hydrogen atoms thus,
Last step is to balance the charge, add 5 electrons to the left to balance the charge.
In reaction (2), add 2 hydrogen ions to the right to balance the hydrogen atoms.
Balance the charge by adding 2 electrons to the right:
To get the net balanced reaction, add reaction (3) and (4)
The balanced oxidation-reduction reaction is as follows:
![Check Mark](/static/check-mark.png)
(b)
Interpretation:
The given half reaction should be balanced in acidic medium.
Concept Introduction:
The oxidation-reduction reaction is also known as a redox reaction. In this reaction, one reactant is oxidized and other is reduced. In balancing an oxidation-reduction reaction, they must be first divided into two half reactions: one is oxidation reaction and other is reduction reaction.
The balancing of redox reaction is complicated as compared to simple balancing. It is necessary to determine the half reactions of reactants undergoing oxidation and reduction. On adding the two half-reactions, net total equation can be obtained. This method of balancing redox reaction is known as half equation method.
The following rules must be followed in balancing redox reaction by half equation method:
- Initially, redox reaction is separated into two half equations; oxidation and reduction.
- Atoms other than hydrogen and oxygen are balanced first in the unbalanced half equations.
- Oxygen atoms are balanced by addition of water on either side of the reaction.
- Hydrogen ion/s is added to balance the hydrogen atom.
- Electrons are added to balance the charge.
- Half reactions are added to get the net total equation.
- The further addition of hydroxide ion takes place on both side of the reaction, if the solution is basic in nature to neutralise the hydrogen ion present in the solution.
Answer to Problem 89AP
Explanation of Solution
The above reaction can be separated into two half reactions as follows:
And,
To reaction (1) add 3 water molecule to the right to balance the number of oxygen atoms,
To balance the hydrogen atom, add 6 hydrogen ions to the left
Last step is to balance the charge, add 6 electrons to the left to balance the charge.
In reaction (2), charge can be balanced by adding 1 electron to the right thus,
To get the net balanced reaction, add reaction (3) and (4)
The balanced oxidation-reduction reaction is as follows:
![Check Mark](/static/check-mark.png)
(c)
Interpretation:
The given half reaction should be balanced in acidic medium.
Concept Introduction:
The oxidation-reduction reaction is also known as a redox reaction. In this reaction, one reactant is oxidized and other is reduced. In balancing an oxidation-reduction reaction, they must be first divided into two half reactions: one is oxidation reaction and other is reduction reaction.
The balancing of redox reaction is complicated as compared to simple balancing. It is necessary to determine the half reactions of reactants undergoing oxidation and reduction. On adding the two half-reactions, net total equation can be obtained. This method of balancing redox reaction is known as half equation method.
The following rules must be followed in balancing redox reaction by half equation method:
- Initially, redox reaction is separated into two half equations; oxidation and reduction.
- Atoms other than hydrogen and oxygen are balanced first in the unbalanced half equations.
- Oxygen atoms are balanced by addition of water on either side of the reaction.
- Hydrogen ion/s is added to balance the hydrogen atom.
- Electrons are added to balance the charge.
- Half reactions are added to get the net total equation.
- The further addition of hydroxide ion takes place on both side of the reaction, if the solution is basic in nature to neutralise the hydrogen ion present in the solution.
Answer to Problem 89AP
Explanation of Solution
The given reaction is as follows:
The two half reactions will be:
And,
In reaction (1) add 1 water molecule to the right to balance number of oxygen atoms:
Now, add one hydrogen ion to balance the hydrogen atom.
Charge can be balanced by adding 1 electron to the left,
In reaction (2), give coefficient 2 to
Now, add two electrons to the right to balance the negative charge.
To get the net balanced reaction, add reaction (3) and (4)
The balanced oxidation-reduction reaction is as follows:
Want to see more full solutions like this?
Chapter 18 Solutions
Introductory Chemistry: A Foundation
- Step 1: add a curved arrow. Select Draw Templates More / " C H Br 0 Br : :o: Erase H H H H Q2Q Step 2: Draw the intermediates and a curved arrow. Select Draw Templates More MacBook Air / " C H Br 0 9 Q Erase 2Qarrow_forwardO Macmillan Learning Question 23 of 26 > Stacked Step 7: Check your work. Does your synthesis strategy give a substitution reaction with the expected regiochemistry and stereochemistry? Draw the expected product of the forward reaction. - - CN DMF MacBook Air Clearly show stereochemistry. Questionarrow_forwardNH2 1. CH3–MgCl 2. H3O+ ? As the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule with a new C - C bond as its major product: If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If the major products of this reaction won't have a new C - C bond, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. This reaction will not make a product with a new C - C bond. Х ☐: Carrow_forward
- Predict the major products of this organic reaction. If there will be no major products, check the box under the drawing area instead. No reaction. : + Х è OH K Cr O 2 27 2 4' 2 Click and drag to start drawing a structure.arrow_forwardLaminar compounds are characterized by havinga) a high value of the internal surface of the solid.b) a high adsorption potential.arrow_forwardIntercalation compounds have their sheetsa) negatively charged.b) positively charged.arrow_forward
- Indicate whether the following two statements are correct or not:- Polythiazine, formed by N and S, does not conduct electricity- Carbon can have a specific surface area of 3000 m2/garrow_forwardIndicate whether the following two statements are correct or not:- The S8 heterocycle is the origin of a family of compounds- Most of the elements that give rise to stable heterocycles belong to group d.arrow_forwardcould someone draw curly arrow mechanism for this question pleasearrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)