
(a)
Interpretation:
The atoms being oxidized and reduced should be determined.
Concept Introduction:
The oxidation state is defined as the charge(s) that an atom would have when electron(s) were transferred completely from a molecule or ion.
The element being oxidized is the one whose oxidation increases in the reaction whereas the reduced element is the one whose oxidation number decreases in the reaction.
The atom which gains electrons in the reaction that is which gets reduced in the reaction is said to be the oxidizing agent also known as the electron acceptor whereas the atom which loses electrons in the reaction that is which gets oxidized in the reaction is said to be the reducing agent also known as the electron donor.

Answer to Problem 32QAP
C being oxidized and Cl being reduced.
Explanation of Solution
Given:
The oxidation state is defined as the charge(s) that an atom would have when electron(s) were transferred completely from a molecule or ion.
While determining the oxidation state of compound, the element with greater electronegativity is assigned with negative value of oxidation state which is equal to the charge as an anion in ionic compounds and element whose oxidation states are fixed are assigned. For compounds with no charge, the sum of oxidation states is zero.
The oxidation states are determined as:
The oxidation state for
For
The oxidation state of K is assigned as + 1 and O is assigned as -2 and the oxidation state of Cl is assigned as x:
Since,
so:
1 - x + 3(-2) = 0
x = + 5
For
The oxidation state of O is assigned as -2, of H as + 1 and the oxidation state of C is assigned as x:
Since,
so:
6x + 12(1) + 6(-2) = 0
x = 0
For
The oxidation state of K is assigned as + 1 and the oxidation state of Cl is assigned as x:
Since,
so:
1 + (-x) = 0
x = + 1
For
The oxidation state of O is assigned as -2 and the oxidation state of C is assigned as x:
Since,
so:
x + 2(-2) = 0
x = + 4
Oxidation states:+50+1+4
Since, the oxidation state of C increases from 0 to + 4 so, it undergoes oxidation and the oxidation state of Cl decreases from + 5 to + 1 so it undergoes reduction.
(b)
Interpretation:
The atoms being oxidized and reduced should be determined.
Concept Introduction:
The oxidation state is defined as the charge(s) that an atom would have when electron(s) were transferred completely from a molecule or ion.
The element being oxidized is the one whose oxidation increases in the reaction whereas the reduced element is the one whose oxidation number decreases in the reaction.
The atom which gains electrons in the reaction that is which gets reduced in the reaction is said to be the oxidizing agent also known as the electron acceptor whereas the atom which loses electrons in the reaction that is which gets oxidized in the reaction is said to be the reducing agent also known as the electron donor.

Answer to Problem 32QAP
C being oxidized and O being reduced.
Explanation of Solution
Given:
The oxidation state is defined as the charge(s) that an atom would have when electron(s) were transferred completely from a molecule or ion.
While determining the oxidation state of compound, the element with greater electronegativity is assigned with negative value of oxidation state which is equal to the charge as an anion in ionic compounds and element whose oxidation states are fixed are assigned. For compounds with no charge, the sum of oxidation states is zero.
The oxidation states are determined as:
The oxidation state for
For
The oxidation state of H is assigned as + 1 and the oxidation state of C is assigned as x:
Since,
so:
8 x + 18(-1) = 0
x = -2.25
For
The oxidation state of H is assigned as + 1 and the oxidation state of O is assigned as x:
Since,
so:
1(2) + x = 0
x = -2
For
The oxidation state of O is assigned as -2 and the oxidation state of C is assigned as x:
Since,
so:
x + 2(-2) = 0
x = + 4
Oxidation states:-2.250+4-2
Since, the oxidation state of C increases from -2.25 to + 4 so, it undergoes oxidation and the oxidation state of O decreases from 0 to -2 so it undergoes reduction.
(c)
Interpretation:
The atoms being oxidized and reduced should be determined.
Concept Introduction:
The oxidation state is defined as the charge(s) that an atom would have when electron(s) were transferred completely from a molecule or ion.
The element being oxidized is the one whose oxidation increases in the reaction whereas the reduced element is the one whose oxidation number decreases in the reaction.
The atom which gains electrons in the reaction that is which gets reduced in the reaction is said to be the oxidizing agent also known as the electron acceptor whereas the atom which loses electrons in the reaction that is which gets oxidized in the reaction is said to be the reducing agent also known as the electron donor.

Answer to Problem 32QAP
P being oxidized and Cl being reduced.
Explanation of Solution
Given:
The oxidation state is defined as the charge(s) that an atom would have when electron(s) were transferred completely from a molecule or ion.
While determining the oxidation state of compound, the element with greater electronegativity is assigned with negative value of oxidation state which is equal to the charge as an anion in ionic compounds and element whose oxidation states are fixed are assigned. For compounds with no charge, the sum of oxidation states is zero.
The oxidation states are determined as:
The oxidation state for
For
The oxidation state of Cl is assigned as -1 and the oxidation state of P is assigned as x:
Since,
so:
x + 3(-1) = 0
x = + 3
For
The oxidation state of Cl is assigned as -1 and the oxidation state of P is assigned as x:
Since,
so:
x + 5(-1) = 0
x = + 5
Oxidation states: + 30 + 5(for P) -1(for O)
Since, the oxidation state of P increases from + 3 to + 5 so, it undergoes oxidation and the oxidation state of Cl decreases from 0 to -1 so it undergoes reduction.
(d)
Interpretation:
The atoms being oxidized and reduced should be determined.
Concept Introduction:
The oxidation state is defined as the charge(s) that an atom would have when electron(s) were transferred completely from a molecule or ion.
The element being oxidized is the one whose oxidation increases in the reaction whereas the reduced element is the one whose oxidation number decreases in the reaction.
The atom which gains electrons in the reaction that is which gets reduced in the reaction is said to be the oxidizing agent also known as the electron acceptor whereas the atom which loses electrons in the reaction that is which gets oxidized in the reaction is said to be the reducing agent also known as the electron donor.

Answer to Problem 32QAP
Ca being oxidized and H being reduced.
Explanation of Solution
Given:
The oxidation state is defined as the charge(s) that an atom would have when electron(s) were transferred completely from a molecule or ion.
While determining the oxidation state of compound, the element with greater electronegativity is assigned with negative value of oxidation state which is equal to the charge as an anion in ionic compounds and element whose oxidation states are fixed are assigned. For compounds with no charge, the sum of oxidation states is zero.
The oxidation states are determined as:
The oxidation state for
For
The oxidation state of Ca is assigned as + 2 and the oxidation state of H is assigned as x:
Since,
so:
+2 + 2(x) = 0
x = -1
Oxidation states: 0 0 + 2(for Ca) -1(for H)
Since, the oxidation state of Ca increases from 0 to + 2 so, it undergoes oxidation and the oxidation state of H decreases from 0 to -1 so it undergoes reduction.
Want to see more full solutions like this?
Chapter 18 Solutions
Introductory Chemistry: A Foundation
- Predict the major products of this organic reaction: H OH 1. LiAlH4 2. H₂O ? Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. G C टेarrow_forwardFor each reaction below, decide if the first stable organic product that forms in solution will create a new C-C bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. NH2 CI MgCl ? Will the first product that forms in this reaction create a new CC bond? Yes No MgBr ? Will the first product that forms in this reaction create a new CC bond? Yes No G टेarrow_forwardFor each reaction below, decide if the first stable organic product that forms in solution will create a new CC bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. དྲ。 ✗MgBr ? O CI Will the first product that forms in this reaction create a new C-C bond? Yes No • ? Will the first product that forms in this reaction create a new CC bond? Yes No × : ☐ Xarrow_forward
- Predict the major products of this organic reaction: OH NaBH4 H ? CH3OH Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. ☐ : Sarrow_forwardPredict the major products of this organic reaction: 1. LIAIHA 2. H₂O ? Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. X : ☐arrow_forwardFor each reaction below, decide if the first stable organic product that forms in solution will create a new C - C bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. NH2 tu ? ? OH Will the first product that forms in this reaction create a new CC bond? Yes No Will the first product that forms in this reaction create a new CC bond? Yes No C $ ©arrow_forward
- As the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule with a new C-C bond as its major product: 1. MgCl ? 2. H₂O* If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If the major products of this reaction won't have a new CC bond, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. This reaction will not make a product with a new CC bond. G marrow_forwardIncluding activity coefficients, find [Hg22+] in saturated Hg2Br2 in 0.00100 M NH4 Ksp Hg2Br2 = 5.6×10-23.arrow_forwardgive example for the following(by equation) a. Converting a water insoluble compound to a soluble one. b. Diazotization reaction form diazonium salt c. coupling reaction of a diazonium salt d. indacator properties of MO e. Diazotization ( diazonium salt of bromobenzene)arrow_forward
- 2-Propanone and ethyllithium are mixed and subsequently acid hydrolyzed. Draw and name the structures of the products.arrow_forward(Methanesulfinyl)methane is reacted with NaH, and then with acetophenone. Draw and name the structures of the products.arrow_forward3-Oxo-butanenitrile and (E)-2-butenal are mixed with sodium ethoxide in ethanol. Draw and name the structures of the products.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





