
(a)
Interpretation:
The given
Concept Introduction:
The oxidation-reduction reaction is also known as a redox reaction. In this reaction, one reactant is oxidized and other is reduced. In balancing an oxidation-reduction reaction they must be first divided into two half reactions: one is oxidation reaction and other is reduction reaction.
The balancing of redox reaction is complicated as compared to simple balancing. It is necessary to determine the half reactions of reactants undergoing oxidation and reduction. On adding the two half-reactions, net total equation can be obtained. This method of
The following rules must be followed in balancing redox reaction by half equation method:
- Initially, redox reaction is separated into two half equations; oxidation and reduction.
- Atoms other than hydrogen and oxygen are balanced first in the unbalanced half equations.
- Oxygen atoms are balanced by addition of water on either side of the reaction.
- Hydrogen ion/s is added to balance the hydrogen atom.
- Electrons are added to balance the charge.
- Half reactions are added to get the net total equation.
- The further addition of hydroxide ion takes place on both side of the reaction, if the solution is basic in nature to neutralise the hydrogen ion present in the solution.

Answer to Problem 46QAP
Explanation of Solution
The given reaction is as follows:
First step is to separate the two half reaction,
And,
Now to balance reaction (1), there is + 3 charge on right thus, 3 electrons are added to right,
Similarly, reaction (2) can be balanced by adding hydrogen ion to the left or giving coefficient 2 to hydrogen ion on left thus,
Now, to balance the charge, 2 electrons are added to left side of the reaction arrow thus,
Now, adding reaction (3) and (4) to get the net overall reaction,
Thus, the balanced reaction by half reaction method will be:
(b)
Interpretation:
The given oxidation-reduction reaction should be balanced using the half-reaction method.
Concept Introduction:
The oxidation-reduction reaction is also known as a redox reaction. In this reaction, one reactant is oxidized and other is reduced. In balancing an oxidation-reduction reaction they must be first divided into two half reactions: one is oxidation reaction and other is reduction reaction.
The balancing of redox reaction is complicated as compared to simple balancing. It is necessary to determine the half reactions of reactants undergoing oxidation and reduction. On adding the two half-reactions, net total equation can be obtained. This method of balancing redox reaction is known as half equation method.
The following rules must be followed in balancing redox reaction by half equation method:
- Initially, redox reaction is separated into two half equations; oxidation and reduction.
- Atoms other than hydrogen and oxygen are balanced first in the unbalanced half equations.
- Oxygen atoms are balanced by addition of water on either side of the reaction.
- Hydrogen ion/s is added to balance the hydrogen atom.
- Electrons are added to balance the charge.
- Half reactions are added to get the net total equation.
- The further addition of hydroxide ion takes place on both side of the reaction, if the solution is basic in nature to neutralise the hydrogen ion present in the solution.

Answer to Problem 46QAP
Explanation of Solution
The given reaction is as follows:
First step is to separate the two half reaction,
And,
First reaction 1 is balanced by adding 2 electrons to the right side of the reaction arrow:
Now, to balance reaction to 2 water molecules are added to right side of the reaction arrow:
Now, to balance hydrogen atoms, 4 hydrogen ions can be added to left side of the reaction arrow:
To balance the charge, 3 electrons must be added to left,
Now, adding reaction (3) and (4) to get the net overall reaction,
Thus, the balanced reaction by half reaction method will be:
(c)
Interpretation:
The given oxidation-reduction reaction should be balanced using the half-reaction method.
Concept Introduction:
The oxidation-reduction reaction is also known as a redox reaction. In this reaction, one reactant is oxidized and other is reduced. In balancing an oxidation-reduction reaction they must be first divided into two half reactions: one is oxidation reaction and other is reduction reaction.
The balancing of redox reaction is complicated as compared to simple balancing. It is necessary to determine the half reactions of reactants undergoing oxidation and reduction. On adding the two half-reactions, net total equation can be obtained. This method of balancing redox reaction is known as half equation method.
The following rules must be followed in balancing redox reaction by half equation method:
- Initially, redox reaction is separated into two half equations; oxidation and reduction.
- Atoms other than hydrogen and oxygen are balanced first in the unbalanced half equations.
- Oxygen atoms are balanced by addition of water on either side of the reaction.
- Hydrogen ion/s is added to balance the hydrogen atom.
- Electrons are added to balance the charge.
- Half reactions are added to get the net total equation.
- The further addition of hydroxide ion takes place on both side of the reaction, if the solution is basic in nature to neutralise the hydrogen ion present in the solution.

Answer to Problem 46QAP
Explanation of Solution
The given reaction is as follows:
First step is to separate the two half reaction,
And,
First reaction 1 is balanced by giving coefficient 2 to
Next step is to balance oxygen atom by adding 6 water molecule on left thus,
Now, hydrogen atoms are balanced adding 12 hydrogen ions to the right:
Last step is to balance the charge, thus, 10 electrons are added to right side of the reaction arrow.
Now to balance reaction (2), chlorine atom is balanced first by giving coefficient 2 to
To balance the hydrogen atom, 2 hydrogen ions are added to left thus,
Last step is to balance the charge, thus, two electrons are added to left side of the reaction arrow:
Now, adding reaction (3) and (4) to get the net overall reaction,
Thus, the balanced reaction by half reaction method will be:
(d)
Interpretation:
The given oxidation-reduction reaction should be balanced using the half-reaction method.
Concept Introduction:
The oxidation-reduction reaction is also known as a redox reaction. In this reaction, one reactant is oxidized and other is reduced. In balancing an oxidation-reduction reaction they must be first divided into two half reactions: one is oxidation reaction and other is reduction reaction.
The balancing of redox reaction is complicated as compared to simple balancing. It is necessary to determine the half reactions of reactants undergoing oxidation and reduction. On adding the two half-reactions, net total equation can be obtained. This method of balancing redox reaction is known as half equation method.
The following rules must be followed in balancing redox reaction by half equation method:
- Initially, redox reaction is separated into two half equations; oxidation and reduction.
- Atoms other than hydrogen and oxygen are balanced first in the unbalanced half equations.
- Oxygen atoms are balanced by addition of water on either side of the reaction.
- Hydrogen ion/s is added to balance the hydrogen atom.
- Electrons are added to balance the charge.
- Half reactions are added to get the net total equation.
- The further addition of hydroxide ion takes place on both side of the reaction, if the solution is basic in nature to neutralise the hydrogen ion present in the solution.

Answer to Problem 46QAP
Explanation of Solution
The given reaction is as follows:
First step is to separate the two half reaction,
And,
In reaction 1, oxygen atom can be balanced by adding 1 water molecule to the right:
Now, hydrogen atom can be balanced by adding 2 hydrogen ions to the left thus,
Last step is to balance the charge, since, there is + 1 charge on left and -1 charge on right thus, two electrons must be added to left thus,
Now, adding reaction (3) and (4) to get the net overall reaction,
Thus, the balanced reaction by half reaction method will be:
Want to see more full solutions like this?
Chapter 18 Solutions
Introductory Chemistry: A Foundation
- Provide the semi-developed formula of isooxazole obtained by reacting acetylacetone and hydroxylamine.arrow_forwardGiven a 1,3-dicarbonyl compound (R1-CO-CH2-CO-R2), indicate the formula of the compound obtaineda) if I add hydroxylamine (NH2OH) to give an isooxazole.b) if I add thiosemicarbazide (NH2-CO-NH-NH2) to give an isothiazole.arrow_forwardAn orange laser has a wavelength of 610 nm. What is the energy of this light?arrow_forward
- The molar absorptivity of a protein in water at 280 nm can be estimated within ~5-10% from its content of the amino acids tyrosine and tryptophan and from the number of disulfide linkages (R-S-S-R) between cysteine residues: Ε280 nm (M-1 cm-1) ≈ 5500 nTrp + 1490 nTyr + 125 nS-S where nTrp is the number of tryptophans, nTyr is the number of tyrosines, and nS-S is the number of disulfide linkages. The protein human serum transferrin has 678 amino acids including 8 tryptophans, 26 tyrosines, and 19 disulfide linkages. The molecular mass of the most dominant for is 79550. Predict the molar absorptivity of transferrin. Predict the absorbance of a solution that’s 1.000 g/L transferrin in a 1.000-cm-pathlength cuvet. Estimate the g/L of a transferrin solution with an absorbance of 1.50 at 280 nm.arrow_forwardIn GC, what order will the following molecules elute from the column? CH3OCH3, CH3CH2OH, C3H8, C4H10arrow_forwardBeer’s Law is A = εbc, where A is absorbance, ε is the molar absorptivity (which is specific to the compound and wavelength in the measurement), and c is concentration. The absorbance of a 2.31 × 10-5 M solution of a compound is 0.822 at a wavelength of 266 nm in a 1.00-cm cell. Calculate the molar absorptivity at 266 nm.arrow_forward
- How to calculate % of unknown solution using line of best fit y=0.1227x + 0.0292 (y=2.244)arrow_forwardGiven a 1,3-dicarbonyl compound, state the (condensed) formula of the compound obtaineda) if I add hydroxylamine (NH2OH) to give an isooxazole.b) if I add thiosemicarbazide (NH2-CO-NH-NH2) to give an isothiazole.arrow_forwardComplete the following acid-base reactions and predict the direction of equilibrium for each. Justify your prediction by citing pK values for the acid and conjugate acid in each equilibrium. (a) (b) NHs (c) O₂N NH NH OH H₁PO₁arrow_forward
- 23.34 Show how to convert each starting material into isobutylamine in good yield. ཅ ནད ཀྱི (b) Br OEt (c) (d) (e) (f) Harrow_forwardPlease help me Please use https://app.molview.com/ to draw this. I tried, but I couldn't figure out how to do it.arrow_forwardPropose a synthesis of 1-butanamine from the following: (a) a chloroalkane of three carbons (b) a chloroalkane of four carbonsarrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





