Essential Organic Chemistry, Global Edition
3rd Edition
ISBN: 9781292089034
Author: Paula Yurkanis Bruice
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 41P
Interpretation Introduction
Interpretation:
Reason for why glucose-6-phosphate gets isomerized to fructose-6-phosphate before the cleavage reaction with aldolase during glycolysis has to be explained.
Concept introduction:
- Enzyme is a protein that is a biological catalyst. The reactant in a reaction catalyzed by the enzyme is called substrate. In the enzyme, a pocket like cleft is present called active site where it binds the substrate.
- Some amino acid chains in the enzyme act as base, acid and nucleophilic catalyst. Many of the enzymes contain metal ions at the active site which acts as catalyst.
- Acid Catalyst helps in increasing the rate of a particular reaction by the donation of a proton to substrate.
- Base Catalyst helps in increasing the rate of a particular reaction by the removal of a proton to substrate.
- Nucleophilic catalysis helps in increasing the rate of a particular reaction by the formation of a covalent bond with substrate
- Glycolysis: A series of reactions where glucose is converted to two pyruvate molecules in the presence of enzymes catalysis.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
what is the structure digested by and how many
reducing sugars are present
ОН ОН
Но
OH
HO
Но
HO-
OH
HO,
The trisaccharide pictured could be completely digested (ie into monomers) by
a beta-galactosidase and an alpha-glucosidase
an alpha-galactosidase and sucrase
lactase and sucrase
a beta-fructosidase and lactase
(a) Are galactose and mannose constitutional isomers or stereoisomers? (b) Draw the structure of galactose 1-phosphate and mannose 6-phosphate. (c) Are these two phosphates constitutional isomers or stereoisomers?
In glycolysis, why must glucose-6-phosphate isomerize to fructose-6-phosphate (Section 22.12 ) before thecleavage reaction with aldolase occurs?
Chapter 18 Solutions
Essential Organic Chemistry, Global Edition
Ch. 18.1 - Prob. 1PCh. 18.2 - If H218O were used to hydrolyze lysozyme, which...Ch. 18.3 - Which of the following amino acid side chains can...Ch. 18.3 - Arginine and lysine side chains fit into trypsins...Ch. 18.4 - Which of the following amino acid side chains can...Ch. 18.4 - Prob. 6PCh. 18.5 - Prob. 7PCh. 18.5 - Draw the mechanism for the hydroxide-ion-catalyzed...Ch. 18.5 - What advantage does the enzyme gain by forming an...Ch. 18.7 - Prob. 10P
Ch. 18.7 - Prob. 11PCh. 18.8 - How many conjugated double bonds are there in a....Ch. 18.8 - Instead of adding to the 4a-position and...Ch. 18.8 - In succinate dehydrogenase, FAD is covalently...Ch. 18.8 - Prob. 15PCh. 18.9 - Acetolactate synthase is another TPP-requiring...Ch. 18.9 - Acetolactate synthase can also transfer the acyl...Ch. 18.9 - Prob. 18PCh. 18.9 - Prob. 19PCh. 18.10 - Prob. 21PCh. 18.11 - Prob. 23PCh. 18.11 - Which compound is more easily decarboxylated?Ch. 18.11 - Explain why the ability of PLP to catalyze an...Ch. 18.11 - Explain why the ability of PLP to catalyze an...Ch. 18.12 - What groups are interchanged in the following...Ch. 18.13 - Why is the coenzyme called tetrahydrofolate?Ch. 18.13 - What amino acid is formed by the following...Ch. 18.13 - How do the structures of tetrahydrofolate and...Ch. 18.13 - What is the source of the methyl group in...Ch. 18 - Prob. 32PCh. 18 - Prob. 33PCh. 18 - From what vitamins are the following coenzymes...Ch. 18 - Prob. 35PCh. 18 - For each of the following reaction, name both the...Ch. 18 - Explain why serine proteases do not catalyze...Ch. 18 - Prob. 38PCh. 18 - For each of the following enzyme catalyzed...Ch. 18 - Trisephosphate isomerase (TIM) catalyzes the...Ch. 18 - Prob. 41PCh. 18 - What acyl groups have we seen transferred by...Ch. 18 - When UMP is dissolved in T2O, exchange of T for H...Ch. 18 - Prob. 44PCh. 18 - When transaminated, the three branched-chain amino...Ch. 18 - Aldolase shows no activity if it is incubated with...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- One of the steps in the pentose phosphate pathway for glucose catabolism is the reaction of xylulose 5-phosphate with ribose 5-phosphate in the presence of a transketolase to give glyceraldehyde 3-phosphate and sedoheptulose 7-phosphate. (a) The first part of the reaction is nucleophilic addition of thiamin diphosphate (TPP) ylide to xylulose 5-phosphate, followed by a retro-aldol cleavage to give glyceraldehyde 3-phosphate and a TPPcontaining enamine. Show the structure of the enamine and the mechanism by which it is formed. (b) The second part of the reaction is addition of the enamine to ribose 5-phosphate followed by loss of TPP ylide to give sedoheptulose 7-phosphate. Show the mechanism.arrow_forwardWhat is the product of the reaction when α-amylase acts on amylose? (A) amylose molecules (B) monosaccharide molecules (C) different-sized oligosaccharide fragments (D) different-sized polysaccharide fragmentsarrow_forwardIn strong base, glucose converts to fructose. Explain howthis conversion occurs.arrow_forward
- Glucose units cleaved from glycogen by the phosphorylase: are phosphorylated at the C1 position by hexokinase to generate glucose 1-phosphate are converted into fructose 1-phosphate and then enter glycolysis at step 3 need to have their 1-phosphate moved to the C6 position before they can enter glycolysis directly enter glycolysis at step 2, where they are converted to fructose 6-phosphatearrow_forwardWhen d-glucose is reduced with sodium borohydride, optically active glucitol results.When optically active d-galactose is reduced, however, the product is optically inactive.Explain this loss of optical activityarrow_forwardIn the citric acid cycle, a - ketoglutarate dehydrogenase catalyzes the reaction from a - ketoglutarate to Succinyl CoA. Given this reaction, calculate for the enthalpy of formation of the product using (a) Hess's Law, (b) standard enthalpies of formation and (c) mean bond enthalpies. Show your complete solution. COA-S OOC CH2 CH2 + NAD++ COA + CO2 + NADH CH2 a-ketoglutarate CH2 dehydrogenase COO a-ketoglutarate COO Succinyl CoAarrow_forward
- Are l-erythrose and l-threose enantiomers or diastereomersarrow_forwardβ-D-N-acetylgalactosamine and α-D-N-acetylglucosamine are examples of epimers, enantiomers, aldose-ketose pair, or anomers?arrow_forwardIdentify the enzyme needed in each of the following reactions as an isomerase, a decarboxylase, a dehydrogenase, a lipase, or a phosphatase.arrow_forward
- One of the steps in the pentose phosphate pathway for glucose catabolism is the reaction of sedoheptulose 7-phosphate with glyceraldehydes 3-phosphate in the presence of a transaldolase to yield erythrose 4-phosphate and fructose 6-phosphate. (a) The first part of the reaction is the formation of a protonated Schiff base of sedoheptulose 7-phosphate with a lysine residue in the enzyme followed by a retro-aldol cleavage to give an enamine plus erythrose 4-phosphate. Show the structure of the enamine and the mechanism by which it is formed. (b) The second part of the reaction is a nucleophilic addition of the enamine to glyceraldehyde 3-phosphate followed by hydrolysis of the Schiff base to give fructose 6-phosphate. Show the mechanism.arrow_forward(i) Write the product obtained when D-glucose reacts with HCN. (ii) What type of bonding stabilizes the α-helix structure of proteins? (iii) Write the name of the disease caused by the deficiency of vitamin B12arrow_forward(a) Locate the glycosidic linkage in cellobiose. (b) Number the carbon atoms in both rings. (c) Classify the glycosidic linkage as α or β, and use numbers to designate its location.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Organic And Biological Chemistry
Chemistry
ISBN:9781305081079
Author:STOKER, H. Stephen (howard Stephen)
Publisher:Cengage Learning,
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning