Astronomy
1st Edition
ISBN: 9781938168284
Author: Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 17E
Star X has lines of ionized helium in its spectrum, and star Y has bands of titanium oxide. Which is hotter? Why? The spectrum of star Z shows lines of ionized helium and also molecular bands of titanium oxide. What is strange about this spectrum? Can you suggest an explanation?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Our Sun is considered an "average" star. What is the average star really like? Explain. Could you go out at night and point out an average star? Why or why not?
3.
Consider two stars. Star A has a surface temperature of 12000 K. Star B has a surface
temperature of 6000 K. The diameter of star A is twice of the diameter of star B. The two
stars have the same apparent magnitude.
Answer the following questions about star A and star B. There is no need to explain
(a) Which star is more luminous (i.e. emitting more radiation power)?
(b) Which star is brighter in the sky?
(c) Which star is at a larger distance (measuring from Earth)?
Star A has lines of ionized helium in its spectrum, and star B has bands of titanium oxide. Which is hotter? How can you tell?
Chapter 17 Solutions
Astronomy
Ch. 17 - What two factors determine how bright a star...Ch. 17 - Explain why color is a measure of a star’s...Ch. 17 - What is the main reason that the spectra of all...Ch. 17 - What elements are stars mostly made of? How do we...Ch. 17 - What did Annie Cannon contribute to the...Ch. 17 - Name five characteristics of a star that can be...Ch. 17 - How do objects of spectral types L, T, and Y...Ch. 17 - Do stars that look brighter in the sky have larger...Ch. 17 - The star Antares has an apparent magnitude of 1.0,...Ch. 17 - Based on their colors, which of the following...
Ch. 17 - Order the seven basic spectral types from hottest...Ch. 17 - What is the defining difference between a brown...Ch. 17 - If the star Sirius emits 23 times more energy than...Ch. 17 - How would two stars of equal luminosity-one blue...Ch. 17 - Table 17.2 lists the temperature ranges that...Ch. 17 - Suppose you are given the task of measuring the...Ch. 17 - Star X has lines of ionized helium in its...Ch. 17 - The spectrum of the Sun has hundreds of strong...Ch. 17 - What are the approximate spectral classes of stars...Ch. 17 - Look at the chemical elements in Appendix K. Can...Ch. 17 - Appendix I lists some of the nearest stars. Are...Ch. 17 - Appendix J lists the stars that appear brightest...Ch. 17 - What star appears the brightest in the sky (other...Ch. 17 - Suppose hominids one million years ago had left...Ch. 17 - Why can only a lower limit to the rate of stellar...Ch. 17 - Why do you think astronomers have suggested three...Ch. 17 - Sam, a college student, just bought a new car....Ch. 17 - Would a red star have a smaller or larger...Ch. 17 - Two stars have proper motions of one arcsecond per...Ch. 17 - Suppose there are three stars in space, each...Ch. 17 - What would you say to a friend who made this...Ch. 17 - In Appendix J, how much more luminous is the most...Ch. 17 - Verify that if two stars have a difference of five...Ch. 17 - As seen from Earth, the Sun has an apparent...Ch. 17 - An astronomer is investigating a faint star that...Ch. 17 - The center of a faint but active galaxy has...Ch. 17 - You have enough information from this chapter to...Ch. 17 - Do the previous problem again, this time using the...Ch. 17 - Star A and Star B have different apparent...Ch. 17 - Star A and Star B have different apparent...Ch. 17 - The star Sirius A has an apparent magnitude of 1.5...Ch. 17 - Our Sun, a type G star, has a surface temperature...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The following results were obtained from a broth dilution test for microbial susceptibility. Antibiotic Concent...
Microbiology: An Introduction
120. A hybrid SUV consumes fuel at a rate of 12.8 km/L. How many miles can the car travel on 22.5 gal of gasoli...
Introductory Chemistry (6th Edition)
HOW DO WE KNOW? In this chapter, we focused on extranuclear inheritance and how traits can be determined by gen...
Concepts of Genetics (12th Edition)
13.2 Describe and give an example (real or hypothetical) of each of the following:
upstream activator sequence...
Genetic Analysis: An Integrated Approach (3rd Edition)
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Explain how we can deduce the temperature of a star by determining its color.arrow_forwardSuppose you are given the task of measuring the colors of the brightest stars, listed in Appendix J, through three filters: the first transmits blue light, the second transmits yellow light, and the third transmits red light. If you observe the star Vega, it will appear equally bright through each of the three filters. Which stars will appear brighter through the blue filter than through the red filter? Which stars will appear brighter through the red filter? Which star is likely to have colors most nearly like those of Vega?arrow_forwardA bright red star is moving towards Earth. Which of the choices best completes the following statement describing the spectrum of this star? A(n) ___________ spectrum that is _______ relative to an unmoving star. A. continuous; blueshifted B. continuous; redshifted C. emission; redshifted D. absorption; blueshifted E. absorption; redshiftedarrow_forward
- . The spectrum of Star A peaks at 700 nm. The spectrum of Star B peaks at 470 nm. We know nothing about what stage of stellar evolution either of these stars are in. Which of the following are true? A. Star A has a higher luminosity than Star B. B. Star B has a higher luminosity than Star A. C. Star A is cooler than Star B. D. Not enough information to comment on their luminosities. E. B and C F. C and Darrow_forwardTwo stars (a and b) in a binary system have apparent V-band magnitudes of 8.0 and 8.4 mag, and B-V colour indices of 0.3 and -0.5 mag, respectively. (a) Which star is brightest in the V-band? (b) Which star is brightest in the B-band? (c) Which star would appeal bluer to the naked eye? (d) What is the ratio of monochromatic fluxes of the stars in the B-band? (e) What is the total apparent magnitude of the system in the V-band (assuming it is unresolved)?arrow_forwardQuestion. Star A has a surface temperature of 4000 K while star B is 40,000 K on its surface. Assuming that both have the same radius, indicate the statement that is true: Answer. O Star A emits more at infrared wavelengths than star B The wavelength at which the emission of star B peaks is "redder" than the corresponding wave- length for star A O The radiation spectrum of star B peaks in the infrared range None of the abovearrow_forward
- Astronomers use two basis properties of stars to classify them. These two properties are luminosity and surface temperature. Luminosity usually refers to the brightness of the star relative to the brightness of our sun. Astronomers will often use a star’s color to measure its temperature. Stars with low temperatures produce a reddish light while stars with high temperatures shine with a brilliant blue—white light. Surface temperatures of stars range from 3000o C to 50,000o C. When these surface temperatures are plotted against luminosity, the stars fall into groups. Using the data similar to what you will plot in this activity, Danish astronomer Ejnar Hertzsprung and United States astronomer Henry Norris Russell independently arrived at similar results in what is now commonly referred to as the HR Diagram. Procedures:1. Read the Background Information 2. On the graph paper provided. Place a number next to the star according to its luminosity and surface temperature listed in the data…arrow_forward1. Spectral signatures can be described using luminosity values in different spectral regions. UV Blue Green Red NIR Forest 28 29 36 27 56 Water 22 23 19 13 8 Corn 53 58 59 60 71 Pasture 40 39 42 32 62 Assuming these signatures are influenced by atmospheric effects: is it possible to separate the different categories based on the values in this table? Which band (s) are the most useful for distinguishing between the different classes in this table and why?arrow_forwardThe three most prominent spectral lines of hydrogen are H-α at 656 nm, H-β at 486 nm, and H-γ 434 nm. If we observe an object with H-α at a wavelength of 700 nm, what wavelength will we observe H-β and H-γ? Is the object moving toward or away from us, and how do you know? Suppose we observe another object with H-α at 585 nm. Is this object moving toward or away from us? Is it moving slower or faster than the first object?arrow_forward
- "51 Pegasi" is the name of the first normal star (besides the Sun) around which a planet was discovered. It is in the constellation Pegasus the horse. Its parallax is measured to be 0.064 arcsec. a. What is its distance from us? b. The apparent brightness is 1.79 × 10-10 J/(s·m2 ). What is the luminosity? How does that compare with that of the Sun? Look up the temperature: how doarrow_forward10:49 LTE O < All iCloud Imagine that you are observing a star and you find the wavelength of peak emission for the star to be 400 nm. What would the wavelength of peak emission be for a new star that has a surface temperature that is a quarter of the original star? Using the same pair of stars from the first question, ● how does the luminosity (the energy output) of each star compare if we assume that both stars are the same size? (Please provide a specific factor or proportion) What type of radiation/light (from the electromagnetic spectrum) is each star emitting? Now imagine that we determine that the wavelength of peak emission of the original star was determined to be bluer than it should be based on other observations. Would this indicate that the star is moving towards us or away from us relatively speaking through space? 0arrow_forwardIf a star has a surface temperature of 25,000 K (2.50 ✕ 104 K), at what wavelength (in nm) will it radiate the most energy? nm Is this a cool or hot star? (Give your answer relative to the Sun.) coolhotarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning