
Astronomy
1st Edition
ISBN: 9781938168284
Author: Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 7E
How do objects of spectral types L, T, and Y differ from those of the other spectral types?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
12. Two forces act on a 3.1-kg mass that undergoes acceleration
=
0.91 0.27 m/s². If one force is -1.2î – 2.5ĵ N, what's
the other?
36. Example 5.7: You whirl a bucket of water around in a vertical
circle of radius 1.22 m. What minimum speed at the top of the
circle will keep the water in the bucket?
Passage Problems
Laptop computers are equipped with accelerometers that sense when
the device is dropped and then put the hard drive into a protective mode.
Your computer geek friend has written a program that reads the accel-
erometer and calculates the laptop's apparent weight. You're amusing
yourself with this program on a long plane flight. Your laptop weighs
just 5 pounds, and for a long time that's what the program reports. But
then the "Fasten Seatbelt" light comes on as the plane encounters turbu-
lence. Figure 4.27 shows the readings for the laptop's apparent weight
over a 12-second interval that includes the start of the turbulence.
76. At the first sign of turbulence,
the plane's acceleration
a. is upward.
b. is downward.
c. is impossible to tell from
the graph.
77. The plane's vertical ac-
celeration has its greatest
magnitude
a. during interval B.
b. during interval C.
c. during interval D.
78. During interval C, you can
conclude for certain that the
plane is
Apparent…
Chapter 17 Solutions
Astronomy
Ch. 17 - What two factors determine how bright a star...Ch. 17 - Explain why color is a measure of a star’s...Ch. 17 - What is the main reason that the spectra of all...Ch. 17 - What elements are stars mostly made of? How do we...Ch. 17 - What did Annie Cannon contribute to the...Ch. 17 - Name five characteristics of a star that can be...Ch. 17 - How do objects of spectral types L, T, and Y...Ch. 17 - Do stars that look brighter in the sky have larger...Ch. 17 - The star Antares has an apparent magnitude of 1.0,...Ch. 17 - Based on their colors, which of the following...
Ch. 17 - Order the seven basic spectral types from hottest...Ch. 17 - What is the defining difference between a brown...Ch. 17 - If the star Sirius emits 23 times more energy than...Ch. 17 - How would two stars of equal luminosity-one blue...Ch. 17 - Table 17.2 lists the temperature ranges that...Ch. 17 - Suppose you are given the task of measuring the...Ch. 17 - Star X has lines of ionized helium in its...Ch. 17 - The spectrum of the Sun has hundreds of strong...Ch. 17 - What are the approximate spectral classes of stars...Ch. 17 - Look at the chemical elements in Appendix K. Can...Ch. 17 - Appendix I lists some of the nearest stars. Are...Ch. 17 - Appendix J lists the stars that appear brightest...Ch. 17 - What star appears the brightest in the sky (other...Ch. 17 - Suppose hominids one million years ago had left...Ch. 17 - Why can only a lower limit to the rate of stellar...Ch. 17 - Why do you think astronomers have suggested three...Ch. 17 - Sam, a college student, just bought a new car....Ch. 17 - Would a red star have a smaller or larger...Ch. 17 - Two stars have proper motions of one arcsecond per...Ch. 17 - Suppose there are three stars in space, each...Ch. 17 - What would you say to a friend who made this...Ch. 17 - In Appendix J, how much more luminous is the most...Ch. 17 - Verify that if two stars have a difference of five...Ch. 17 - As seen from Earth, the Sun has an apparent...Ch. 17 - An astronomer is investigating a faint star that...Ch. 17 - The center of a faint but active galaxy has...Ch. 17 - You have enough information from this chapter to...Ch. 17 - Do the previous problem again, this time using the...Ch. 17 - Star A and Star B have different apparent...Ch. 17 - Star A and Star B have different apparent...Ch. 17 - The star Sirius A has an apparent magnitude of 1.5...Ch. 17 - Our Sun, a type G star, has a surface temperature...
Additional Science Textbook Solutions
Find more solutions based on key concepts
True or false? Some trails are considered vestigial because they existed long ago.
Biological Science (6th Edition)
Why isn't FeBr3 used as a catalyst in the first step of the synthesis of 1,3,5-tribromobenzene?
Organic Chemistry (8th Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic. a. One lilac species lives o...
Campbell Essential Biology with Physiology (5th Edition)
2. Define equilibrium population. Outline the conditions that must be met for a population to stay in genetic e...
Biology: Life on Earth (11th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
17. A small boy and a grown woman both speak at approximately the same pitch. Nonetheless, it’s easy to tell wh...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere? Assume you can treat both the person and the metal sphere as point charges a distance 25 cm from each otherarrow_forwardIf the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere? Assume you can treat both the person and the metal sphere as point charges a distance 25 cm from each other (so that you can use Coulomb's Law to calculate the electrical force).arrow_forwardUsing Coulomb's Law, calculate the magnitude of the electrical force between two protons located 1 meter apart from each other. (Give your answer as the number of Newtons but as usual you only need to include the number, not the unit label.)arrow_forward
- Part A You want to get an idea of the magnitude of magnetic fields produced by overhead power lines. You estimate that a transmission wire is about 12 m above the ground. The local power company tells you that the line operates at 12 kV and provide a maximum of 60 MW to the local area. Estimate the maximum magnetic field you might experience walking under such a power line, and compare to the Earth's field. [For an ac current, values are rms, and the magnetic field will be changing.] Express your answer using two significant figures. ΟΤΕ ΑΣΦ VAΣ Bmax= Submit Request Answer Part B Compare to the Earth's field of 5.0 x 10-5 T. Express your answer using two significant figures. Ο ΑΣΦ B BEarth ? ? Tarrow_forwardHo propel 9-kN t. Boat 27. An elevator accelerates downward at 2.4 m/s². What force does the elevator's floor exert on a 52-kg passenger?arrow_forward16. 17 A CUIN Starting from rest and undergoing constant acceleration, a 940-kg racing car covers 400 m in 4.95 s. Find the force on the car.arrow_forward
- ----- vertical diste Section 4.6 Newton's Third Law 31. What upward gravitational force does a 5600-kg elephant exert on Earth?arrow_forward64. Two springs have the same unstretched length but different spring constants, k₁ and k₂. (a) If they're connected side by side and stretched a distance x, as shown in Fig. 4.24a, show that the force exerted by the combination is (k₁ + k₂)x. (b) If they're con- nected end to end (Fig. 4.24b) and the combination is stretched a distance x, show that they exert a force k₁k2x/(k₁ + k₂). www (a) FIGURE 4.24 Problem 65 www (b)arrow_forward65. Although we usually write Newton's second law for one-dimensional motion in the form F =ma, which holds when mass is constant, d(mv) a more fundamental version is F = . Consider an object dt whose mass is changing, and use the product rule for derivatives to show that Newton's law then takes the form F dm = ma + v dtarrow_forward
- If a proton is located on the x-axis in some coordinate system at x0 = -3.2 x 10-5 meters, what is the x-component of the Electric Field due to this proton at a position x = +3.2 x 10-5 meters and on the x axis as the y-axis is 0 giving a number of Newtons/Coulomb?arrow_forwardConsider a single square loop of wire of area A carrying a current I in a uniform magnetic field of strength B. The field is pointing directly up the page in the plane of the page. The loop is oriented so that the plane of the loop is perpendicular to the plane of the page (this means that the normal vector for the loop is always in the plane of the page!). In the illustrations below the magnetic field is shown in red and the current through the current loop is shown in blue. The loop starts out in orientation (i) and rotates clockwise, through orientations (ii) through (viii) before returning to (i). (i) Ø I N - - I N - (iii) (iv) (v) (vii) (viii) a) [3 points] For each of the eight configurations, draw in the magnetic dipole moment vector μ of the current loop and indicate whether the torque on the dipole due to the magnetic field is clockwise (CW), counterclockwise (CCW), or zero. In which two orientations will the loop experience the maximum magnitude of torque? [Hint: Use the…arrow_forwardPlease help with calculating the impusle, thanks! Having calculated the impact and rebound velocities of the ping pong ball and the tennis ball calculate the rebounding impulse: 1.Measure the weight of the balls and determine their mass. Tennis ball: 0.57 kg Ping Pong Ball: 0.00246 kg The impulse, I, is equal to the change in momentum, Pf-Pi. Note the sign change, i.e., going down is negative and up is positive. The unit for momentum is kg-m/s. The change is momentum, impulse, is often givens the equivalent unit of N-S, Newton-Secondarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning

Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax

Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning


Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning