LCPO CHEMISTRY W/MODIFIED MASTERING
8th Edition
ISBN: 9780135214756
Author: Robinson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 17.98SP
The titration of 0.02500 L of a diprotic acid solution with 0.1000 M NaOH requires 34.72 mL of titrant to reach the second equivalence point. The pH is 3.95 at the first equivalence point and 9.27 at the second equivalence point. If the acid solution contained 0.2015 g of the acid, what is the molar mass,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two solutions of an unknown slightly soluble salt, A(OH)2, were allowed to equilibrate—one at 25 °C and the other at 80 °C. A 15.00 mL aliquot of each solution is titrated with 0.200 M HCl. 6.37 mL of the acid is required to reach the endpoint of the titration at 25 °C, while 62.60 mL are required for the 80 °C solution.
Assuming that the change in enthalpy is negligible over this temperature range, calculate ΔH
Calculating the pH of a weak acid titrated with a strong base
0/5
Izabella
An analytical chemist is titrating 127.4 mL of a 0.4200M solution of nitrous acid (HNO 2) with a 0.2400M solution of KOH. The pK of nitrous acid is 3.35.
Calculate the pH of the acid solution after the chemist has added 260.9 mL of the KOH solution to it.
Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of KOH solution added.
Round your answer to 2 decimal places.
pH = 0
☑
G
000
18
Ar
B
Calculating the pH of a weak acid titrated with a strong base
3/5
Izabella
An analytical chemist is titrating 199.4 mL of a 1.200 M solution of cyanic acid (HCNO) with a 0.7400 M solution of KOH. The pK of cyanic acid is 3.46.
Calculate the pH of the acid solution after the chemist has added 362.5 mL of the KOH solution to it.
Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of KOH solution added.
Round your answer to 2 decimal places.
PH
☐
☑
?
000
18
1
Chapter 17 Solutions
LCPO CHEMISTRY W/MODIFIED MASTERING
Ch. 17 - Write a balanced net ionic equation for the...Ch. 17 - APPLY 16.2 Write balanced net ionic equations for...Ch. 17 - PRACTICE 16.3 Calculate the concentrations of all...Ch. 17 - APPLY 16.4 Calculate the pH of a solution prepared...Ch. 17 - Conceptual PRACTICE 16.5 The following pictures...Ch. 17 - Conceptual APPLY 16.6 The following pictures...Ch. 17 - Calculate the pH of 0.100 1 of a buffer solution...Ch. 17 - Calculate the change in pH when 0.002 mol of HNO3...Ch. 17 - PRACTICE 16.10 Use the Henderson-Hasselbalch...Ch. 17 - APPLY 16.11 The of the amine group of the amino...
Ch. 17 - PRACTICE 16.12 How would you prepare anbuffer...Ch. 17 - APPLY 16.13 Suppose you are performing an...Ch. 17 - A 40.0 mL volume of 0.100 M HCl is titrated with...Ch. 17 - APPLY 16.15 A 40.0 mL volume of 0.100 M NaOH is...Ch. 17 - What is the pH at the equivalence point in the...Ch. 17 - The following pictures represent solutions at...Ch. 17 - Assume that 40.0 mL of 0.0800...Ch. 17 - Assume that 40.0 mL of a 0.0250 M solution of the...Ch. 17 - Write the equilibrium-constant expression for...Ch. 17 - The following pictures represent solutions of...Ch. 17 - Prob. 17.21PCh. 17 - Ca2, which causes clotting, is removed from...Ch. 17 - What is the molar solubility of Ag2CrO4 in water...Ch. 17 - Prior to having an X-ray exam of the upper...Ch. 17 - Calculate the molar solubility of MgF2 , in...Ch. 17 - Calculate the molar solubility of Zn(OH)2 , in a...Ch. 17 - In an excess of NH3(aq),Cu2+ ion forms a deep blue...Ch. 17 - Cyanide ion is used in gold mining because it...Ch. 17 - Prob. 17.29PCh. 17 - Prob. 17.30ACh. 17 - Prob. 17.31PCh. 17 - Will a precipitate form on mixing 25 m1 of...Ch. 17 - Prob. 17.33PCh. 17 - Prob. 17.34PCh. 17 - HCO3 And CO32 are the primary ions in the ocean...Ch. 17 - Coral and the shells of marine organisms are made...Ch. 17 - The following reactions represent the dissolution...Ch. 17 - Prob. 17.38CPCh. 17 - The following pictures represent initial...Ch. 17 - Prob. 17.40CPCh. 17 - The following plot shows two pH titration curves,...Ch. 17 - Prob. 17.42CPCh. 17 - The following pictures represent solutions at...Ch. 17 - Prob. 17.44CPCh. 17 - Prob. 17.45CPCh. 17 - Prob. 17.46CPCh. 17 - 16.50 Is the pH greater than, equal to, or less...Ch. 17 - Is the pH greater than, equal to, or less than 7...Ch. 17 - Prob. 17.49SPCh. 17 - Prob. 17.50SPCh. 17 - Prob. 17.51SPCh. 17 - Prob. 17.52SPCh. 17 - 16.56 The equilibrium constant for the...Ch. 17 - 16.57 The equilibrium constant for the...Ch. 17 - 16.58 Does the pH increase, decrease, or remain...Ch. 17 - 16.59 Does the pH increase, decrease, or remain...Ch. 17 - 16.60 Calculate the pH of a solution that is 0.25...Ch. 17 - Prob. 17.58SPCh. 17 - Prob. 17.59SPCh. 17 - The pH of a solution of NH3 and NH4Br is 8.90....Ch. 17 - Prob. 17.61SPCh. 17 - Prob. 17.62SPCh. 17 - Prob. 17.63SPCh. 17 - Which of the following gives a buffer solution...Ch. 17 - Prob. 17.65SPCh. 17 - Prob. 17.66SPCh. 17 - Prob. 17.67SPCh. 17 - Calculate the pH of a buffer solution prepared by...Ch. 17 - Prob. 17.69SPCh. 17 - Calculate the pH of 0.375 L of a 0.18 M acetic...Ch. 17 - Prob. 17.71SPCh. 17 - A food chemist studying the formation of lactic...Ch. 17 - Prob. 17.73SPCh. 17 - Prob. 17.74SPCh. 17 - Prob. 17.75SPCh. 17 - Give a recipe for preparing a CH3CO2HCH3C02NA Na...Ch. 17 - Prob. 17.77SPCh. 17 - Prob. 17.78SPCh. 17 - Consider a buffer solution that contains equal...Ch. 17 - Calculate the concentrations of NH4+ and NH3 and...Ch. 17 - Prob. 17.81SPCh. 17 - Make a rough plot of pH versus milliliters of acid...Ch. 17 - Prob. 17.83SPCh. 17 - Consider the titration of 50.0 mL of 0.116 M NaOH...Ch. 17 - Prob. 17.85SPCh. 17 - Consider the titration of 25.0 mL of 0.200 MHCO2H...Ch. 17 - On the same graph, sketch pH titration curves for...Ch. 17 - Prob. 17.88SPCh. 17 - A 100.0 mL sample of 0.100 M methylamine (...Ch. 17 - A 50.0 mL sample of 0.250 M ammonia (...Ch. 17 - Prob. 17.91SPCh. 17 - Prob. 17.92SPCh. 17 - Prob. 17.93SPCh. 17 - What is the pH at the equivalence point for the...Ch. 17 - Consider the titration of 50.0 mL of a 0.100 M...Ch. 17 - Prob. 17.96SPCh. 17 - Prob. 17.97SPCh. 17 - The titration of 0.02500 L of a diprotic acid...Ch. 17 - Prob. 17.99SPCh. 17 - Prob. 17.100SPCh. 17 - Prob. 17.101SPCh. 17 - Prob. 17.102SPCh. 17 - Prob. 17.103SPCh. 17 - Prob. 17.104SPCh. 17 - Prob. 17.105SPCh. 17 - Use the following solubility data to calculate a...Ch. 17 - Prob. 17.107SPCh. 17 - Prob. 17.108SPCh. 17 - Prob. 17.109SPCh. 17 - Prob. 17.110SPCh. 17 - Prob. 17.111SPCh. 17 - Prob. 17.112SPCh. 17 - Which of the following compounds are more soluble...Ch. 17 - Prob. 17.114SPCh. 17 - Consider saturated solutions of the slightly...Ch. 17 - Prob. 17.116SPCh. 17 - Is the solubility of Zn(OH)2 , increased,...Ch. 17 - Is the solubility of Fe(OH)3 increased, decreased,...Ch. 17 - Prob. 17.119SPCh. 17 - Prob. 17.120SPCh. 17 - Prob. 17.121SPCh. 17 - Prob. 17.122SPCh. 17 - Prob. 17.123SPCh. 17 - Calculate the molar solubility of Cr(OH)3 in 0.50...Ch. 17 - Zinc hydroxide, Zn(OH)2 = (kSP=4.11017) , is...Ch. 17 - Prob. 17.126SPCh. 17 - Prob. 17.127SPCh. 17 - “Hard” water contains alkaline earth cations such...Ch. 17 - Prob. 17.129SPCh. 17 - Prob. 17.130SPCh. 17 - Prob. 17.131SPCh. 17 - Prob. 17.132SPCh. 17 - Prob. 17.133SPCh. 17 - Prob. 17.134SPCh. 17 - Prob. 17.135SPCh. 17 - Using the qualitative analysis flowchart in Figure...Ch. 17 - Give a method for separating the following pairs...Ch. 17 - Prob. 17.138SPCh. 17 - Prob. 17.139SPCh. 17 - Prob. 17.140MPCh. 17 - Calculate the molar solubility of MnS in a 0.30 M...Ch. 17 - Prob. 17.142MPCh. 17 - A 100.0 mL sample of a solution that is 0.100 M in...Ch. 17 - A 0.0100mol sample of solid Cd(OH)2(Ksp=5.31015)...Ch. 17 - One type of kidney stone is a precipitate of...Ch. 17 - Prob. 17.146MPCh. 17 - Ethylenediamine ( NH2CH2CH2NH2 , abbreviated en)...Ch. 17 - A 40.0 mL sample of a mixture of HCI and H3PO4 was...Ch. 17 - A 1.000 L sample of HCI gas at 25 °C and 732.0 mm...Ch. 17 - Prob. 17.150MPCh. 17 - Consider the reaction that occurs on mixing 50.0...Ch. 17 - In qualitative analysis, Ca2+ and Ba2+ are...Ch. 17 - A railroad tank car derails and spills 36 tons of...Ch. 17 - Some progressive hair coloring products marketed...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Aniline hydrochloride, (C6H5NH3)Cl, is a weak acid. (Its conjugate base is the weak base aniline, C6H5NH2.) The acid can be titrated with a strong base such as NaOH. C6H5NH3+(aq)+OH(aq)C6H5NH2(aq)+H2O(l) Assume 50.0 mL of 0.100 M aniline hydrochloride is titrated with 0.185 M NaOH. (Ka for aniline hydrochloride is 2.4 105.) (a) What is the pH of the (C6H5NH3) solution before the titration begins? (b) What is the pH at the equivalence point? (c) What is the pH at the halfway point of the titration? (d) Which indicator in Figure 17.11 could be used to detect the equivalence point? (e) Calculate the pH of the solution after adding 10.0, 20.0, and 30.0 mL of base. (f) Combine the information in parts (a), (b), (c), and (e), and plot an approximate titration curve.arrow_forwardTwo acids, each approximately 0.01 M in concentration, are titrated separately with a strong base. The adds show the following pH values at the equivalence point: HA, pH = 9.5, and HB, pH = 8.5. (a) Which is the stronger acid, HA or HB? (b) Which of the conjugate bases, A or B, is the stronger base?arrow_forwardThe titration of 0.100 M acetic acid with 0.100 M NaOH is described in the text. What is the pH of the solution when 35.0 mL of the base has been added to 100.0 mL of 0.100 M acetic acid?arrow_forward
- The titration curves for two acids with the same base are shown on this graph. (a) Which is the curve for the weaker acid? Explain your choice. (b) Give the approximate pH at the equivalence point for the titration of each acid. (c) Explain why the pH at the equivalence point differs for each acid. (d) Explain why the starting pH values of the two acids differ. (e) Which indicator or indicators, phenolphthalein, bromthymol blue, or methyl red, could be used for the titration of Acid 1? For the titration of Acid 2? Explain your choices.arrow_forwardA 0.4000 M solution of nitric acid is used to titrate 50.00 mL of 0.237 M barium hydroxide. (Assume that volumes are additive.) (a) Write a balanced net ionic equation for the reaction that takes place during titration. (b) What are the species present at the equivalence point? (c) What volume of nitric acid is required to reach the equivalence point? (d) What is the pH of the solution before any HNO3 is added? (e) What is the pH of the solution halfway to the equivalence point? (f) What is the pH of the solution at the equivalence point?arrow_forwardA buffer solution with it pH of 12.00 consists of Na3PO4 and Na2HPO4. The volume of solution is 200.0 mL. (a) Which component of the buffer is present in a larger amount? (b) If the concentration of Na3PO4 is 0.400 M, what mass of Na2HPO4 is present? (c) Which component of the buffer must be added to change the pH to 12.25? What mass of that component is required?arrow_forward
- A buffer solution was prepared by adding 4.95 g of sodium acetate, NaCH3CO2, to 2.50 102 mL of 0.150 M acetic acid, CH3CO2H. (a) What is the pH of the buffer? (b) What is the pH of 1.00 102 mL of the buffer solution if you add 82 mg of NaOH to the solution?arrow_forwardA buffer is composed of 0.200 M HC2H3O2 (Ka = 1.8 × 10–5) and 0.250 M NaC2H3O2. What is the pH of the resulting solution after 0.0200 mol of KOH are added to 500.0 mL of the buffer? Assume that the change in volume is negligible. Enter your response in pH units to the nearest 0.01.arrow_forwardO ACIDS AND BASES Calculating the pH of a weak acid titrated with a strong base pH An analytical chemist is titrating 240.9 mL of a 1.000M solution of butanoic acid (HC3H,CO₂) with a 0.2500M solution of NaOH. The pK of butanoic acid is 4.82. Calculate the pH of the acid solution after the chemist has added 630.6 mL of the NaOH solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of NaOH solution added. Round your answer to 2 decimal places. = 0 X 1/5 S Sabrinaarrow_forward
- When a 18.3 mL sample of a 0.460 M aqueous hydrocyanic acid solution is titrated with a 0.330 M aqueous barium hydroxide solution, (1) What is the pH at the midpoint in the titration? (2) What is the pH at the equivalence point of the titration? (3) What is the pH after 19.1 mL of barium hydroxide have been added?arrow_forward3 A 0.6423 g sample that might contain NaOH, Na₂CO₃, NaHCO₃, or a permissible mixture of the bases is titrated with 0.1062 M HCl by the double indicator method. It is found that 40.83 mL of the acid are required to reach the phenolphthalein end point. Methyl orange is then added to the solution and the titration continued using an additional 12.38 mL of the acid. Calculate the percentage of each component in the sample.arrow_forwardA 100.00 mL buffer is prepared by dissolving 1.22 grams benzoic acid (pKa = 4.20, Molar Mass, μ = 122 g/mol) and 2.88 grams sodium benzoate (Molar Mass, μ = 144 g/mol) in an appropriate amount of water. What is the pH of the buffer solution? What is the pH of the solution if 10.00 mL of 0.25 M HCl is added? What is the pH of the solution if 5.00 mL of 0.25 M NaOH is added instead of HCl?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY