Whether CoS will precipitate or not when Fe ( NO 3 ) 2 and HCl should be determined. Also, CoS will precipitate or not when pH is adjusted to 8 should be determined. Concept introduction: Solubility product in acid is equilibrium constant for reaction that occurs in acid solution when an ionic compound is dissolved to produce ions. It is represented by K spa . Consider MS an ionic compound dissolved in acidic solution. Its dissociation occurs as: MS ( s ) + 2H 3 O + ( a q ) ⇌ M 2 + ( a q ) + H 2 S ( a q ) + 2H 2 O ( l ) The expression for its K spa is as follows: K spa = [ M 2 + ] [ H 2 S ] [ H 3 O + ] A precipitate of an ionic compound will form when solutions that contain respective ions are mixed. The precipitation depends on value of reaction quotient Q c . Q c is defined in same way as K spa . Also, concentrations in the expression for Q c are concentration at time t and not equilibrium concentrations. Consider MS to be an ionic compound. Its dissociation occurs as: MS ( s ) + 2H 3 O + ( a q ) ⇌ M 2 + ( a q ) + H 2 S ( a q ) + 2H 2 O ( l ) The expression for Q c is as follows: Q c = [ M 2 + ] [ H 2 S ] [ H 3 O + ] Metal cations can be separated into two groups by the precipitation of metal sulfide. The cations which form very insoluble sulfides can be separated from cations which form soluble sulfides. The separation takes place in an acidic solution and use solubility equilibrium. The separation depends on the H 3 O + concentration so that reaction quotient Q c exceeds K spa for insoluble sulfides but not for soluble sulfide. As a result, insoluble sulfides precipitate under acidic condition but soluble sulfides remain in solution. The negative logarithm of molar concentration of hydronium ion is called pH . The expression for pH is as follows: pH = − log 10 [ H 3 O + ]
Whether CoS will precipitate or not when Fe ( NO 3 ) 2 and HCl should be determined. Also, CoS will precipitate or not when pH is adjusted to 8 should be determined. Concept introduction: Solubility product in acid is equilibrium constant for reaction that occurs in acid solution when an ionic compound is dissolved to produce ions. It is represented by K spa . Consider MS an ionic compound dissolved in acidic solution. Its dissociation occurs as: MS ( s ) + 2H 3 O + ( a q ) ⇌ M 2 + ( a q ) + H 2 S ( a q ) + 2H 2 O ( l ) The expression for its K spa is as follows: K spa = [ M 2 + ] [ H 2 S ] [ H 3 O + ] A precipitate of an ionic compound will form when solutions that contain respective ions are mixed. The precipitation depends on value of reaction quotient Q c . Q c is defined in same way as K spa . Also, concentrations in the expression for Q c are concentration at time t and not equilibrium concentrations. Consider MS to be an ionic compound. Its dissociation occurs as: MS ( s ) + 2H 3 O + ( a q ) ⇌ M 2 + ( a q ) + H 2 S ( a q ) + 2H 2 O ( l ) The expression for Q c is as follows: Q c = [ M 2 + ] [ H 2 S ] [ H 3 O + ] Metal cations can be separated into two groups by the precipitation of metal sulfide. The cations which form very insoluble sulfides can be separated from cations which form soluble sulfides. The separation takes place in an acidic solution and use solubility equilibrium. The separation depends on the H 3 O + concentration so that reaction quotient Q c exceeds K spa for insoluble sulfides but not for soluble sulfide. As a result, insoluble sulfides precipitate under acidic condition but soluble sulfides remain in solution. The negative logarithm of molar concentration of hydronium ion is called pH . The expression for pH is as follows: pH = − log 10 [ H 3 O + ]
Solution Summary: The author explains that a precipitate of an ionic compound will form when solutions that contain respective ions are mixed.
Whether CoS will precipitate or not when Fe(NO3)2 and HCl should be determined. Also, CoS will precipitate or not when pH is adjusted to 8 should be determined.
Concept introduction:
Solubility product in acid is equilibrium constant for reaction that occurs in acid solution when an ionic compound is dissolved to produce ions. It is represented by Kspa. Consider MS an ionic compound dissolved in acidic solution. Its dissociation occurs as:
MS(s)+2H3O+(aq)⇌M2+(aq)+H2S(aq)+2H2O(l)
The expression for its Kspa is as follows:
Kspa=[M2+][H2S][H3O+]
A precipitate of an ionic compound will form when solutions that contain respective ions are mixed. The precipitation depends on value of reaction quotient Qc. Qc is defined in same way as Kspa. Also, concentrations in the expression for Qc are concentration at time t and not equilibrium concentrations. Consider MS to be an ionic compound. Its dissociation occurs as:
MS(s)+2H3O+(aq)⇌M2+(aq)+H2S(aq)+2H2O(l)
The expression for Qc is as follows:
Qc=[M2+][H2S][H3O+]
Metal cations can be separated into two groups by the precipitation of metal sulfide. The cations which form very insoluble sulfides can be separated from cations which form soluble sulfides. The separation takes place in an acidic solution and use solubility equilibrium.
The separation depends on the H3O+ concentration so that reaction quotient Qc exceeds Kspa for insoluble sulfides but not for soluble sulfide. As a result, insoluble sulfides precipitate under acidic condition but soluble sulfides remain in solution.
The negative logarithm of molar concentration of hydronium ion is called pH. The expression for pH is as follows:
Draw the curved-arrow mechanism with the drawings of the molecules, not
just abbreviations.
-NO₂
Sn, HCl (aq)
E
D
H
(CH3CO)₂O
-NH2
CH3
What is/are the product(s) of the following reaction? Select all that apply.
* HI
A
B
C
OD
OH
A
B
OH
D
C
In the image, the light blue sphere represents a mole of hydrogen atoms, the purple or teal spheres represent a mole of a conjugate base. A light blue sphere by itself is H+.
Assuming there is 2.00 L of solution, answer the following:
The Ka of the left & right solution is?
The pH of the left & right solution is?
The acid on the left & right is what kind of acid?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.