Whether CoS will precipitate or not when Fe ( NO 3 ) 2 and HCl should be determined. Also, CoS will precipitate or not when pH is adjusted to 8 should be determined. Concept introduction: Solubility product in acid is equilibrium constant for reaction that occurs in acid solution when an ionic compound is dissolved to produce ions. It is represented by K spa . Consider MS an ionic compound dissolved in acidic solution. Its dissociation occurs as: MS ( s ) + 2H 3 O + ( a q ) ⇌ M 2 + ( a q ) + H 2 S ( a q ) + 2H 2 O ( l ) The expression for its K spa is as follows: K spa = [ M 2 + ] [ H 2 S ] [ H 3 O + ] A precipitate of an ionic compound will form when solutions that contain respective ions are mixed. The precipitation depends on value of reaction quotient Q c . Q c is defined in same way as K spa . Also, concentrations in the expression for Q c are concentration at time t and not equilibrium concentrations. Consider MS to be an ionic compound. Its dissociation occurs as: MS ( s ) + 2H 3 O + ( a q ) ⇌ M 2 + ( a q ) + H 2 S ( a q ) + 2H 2 O ( l ) The expression for Q c is as follows: Q c = [ M 2 + ] [ H 2 S ] [ H 3 O + ] Metal cations can be separated into two groups by the precipitation of metal sulfide. The cations which form very insoluble sulfides can be separated from cations which form soluble sulfides. The separation takes place in an acidic solution and use solubility equilibrium. The separation depends on the H 3 O + concentration so that reaction quotient Q c exceeds K spa for insoluble sulfides but not for soluble sulfide. As a result, insoluble sulfides precipitate under acidic condition but soluble sulfides remain in solution. The negative logarithm of molar concentration of hydronium ion is called pH . The expression for pH is as follows: pH = − log 10 [ H 3 O + ]
Whether CoS will precipitate or not when Fe ( NO 3 ) 2 and HCl should be determined. Also, CoS will precipitate or not when pH is adjusted to 8 should be determined. Concept introduction: Solubility product in acid is equilibrium constant for reaction that occurs in acid solution when an ionic compound is dissolved to produce ions. It is represented by K spa . Consider MS an ionic compound dissolved in acidic solution. Its dissociation occurs as: MS ( s ) + 2H 3 O + ( a q ) ⇌ M 2 + ( a q ) + H 2 S ( a q ) + 2H 2 O ( l ) The expression for its K spa is as follows: K spa = [ M 2 + ] [ H 2 S ] [ H 3 O + ] A precipitate of an ionic compound will form when solutions that contain respective ions are mixed. The precipitation depends on value of reaction quotient Q c . Q c is defined in same way as K spa . Also, concentrations in the expression for Q c are concentration at time t and not equilibrium concentrations. Consider MS to be an ionic compound. Its dissociation occurs as: MS ( s ) + 2H 3 O + ( a q ) ⇌ M 2 + ( a q ) + H 2 S ( a q ) + 2H 2 O ( l ) The expression for Q c is as follows: Q c = [ M 2 + ] [ H 2 S ] [ H 3 O + ] Metal cations can be separated into two groups by the precipitation of metal sulfide. The cations which form very insoluble sulfides can be separated from cations which form soluble sulfides. The separation takes place in an acidic solution and use solubility equilibrium. The separation depends on the H 3 O + concentration so that reaction quotient Q c exceeds K spa for insoluble sulfides but not for soluble sulfide. As a result, insoluble sulfides precipitate under acidic condition but soluble sulfides remain in solution. The negative logarithm of molar concentration of hydronium ion is called pH . The expression for pH is as follows: pH = − log 10 [ H 3 O + ]
Solution Summary: The author explains that a precipitate of an ionic compound will form when solutions that contain respective ions are mixed.
Whether CoS will precipitate or not when Fe(NO3)2 and HCl should be determined. Also, CoS will precipitate or not when pH is adjusted to 8 should be determined.
Concept introduction:
Solubility product in acid is equilibrium constant for reaction that occurs in acid solution when an ionic compound is dissolved to produce ions. It is represented by Kspa. Consider MS an ionic compound dissolved in acidic solution. Its dissociation occurs as:
MS(s)+2H3O+(aq)⇌M2+(aq)+H2S(aq)+2H2O(l)
The expression for its Kspa is as follows:
Kspa=[M2+][H2S][H3O+]
A precipitate of an ionic compound will form when solutions that contain respective ions are mixed. The precipitation depends on value of reaction quotient Qc. Qc is defined in same way as Kspa. Also, concentrations in the expression for Qc are concentration at time t and not equilibrium concentrations. Consider MS to be an ionic compound. Its dissociation occurs as:
MS(s)+2H3O+(aq)⇌M2+(aq)+H2S(aq)+2H2O(l)
The expression for Qc is as follows:
Qc=[M2+][H2S][H3O+]
Metal cations can be separated into two groups by the precipitation of metal sulfide. The cations which form very insoluble sulfides can be separated from cations which form soluble sulfides. The separation takes place in an acidic solution and use solubility equilibrium.
The separation depends on the H3O+ concentration so that reaction quotient Qc exceeds Kspa for insoluble sulfides but not for soluble sulfide. As a result, insoluble sulfides precipitate under acidic condition but soluble sulfides remain in solution.
The negative logarithm of molar concentration of hydronium ion is called pH. The expression for pH is as follows:
9C.2 Some chemical reactions proceed by the initial loss or transfer of an electron to adiatomic species. Which of the following molecules would you expect to be stabilized by theaddition of an electron or the removal of an electron? N2, NO, O2, C2, F2, CN
Before solving the problem please also give a brief explanation of the concept or associated equation(s) and variables.
(In answer show and explain the sigma and pi bonds with electrons as should be used to help solve with that little graphic or what not)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.