Concept explainers
Interpretation:
The solution with lowest pH and the solution with largest dissociation of B should be determined from the given data and pictures.
Concept introduction:
From the Lewis concept, an acid is a substance which can donate an electron pair while a base is a substance which can accept an electron pair.
While from the Bronsted-Lowrey theory, the acid-base remains in the form of conjugate pair.
A conjugate acid is a base which accepts an H+ ion while a conjugate base is an acid which donates the H+ ion.
For example:
Ammonia (
Similarly,
From the theory, conjugate acid of a weak base is strong while conjugate acid of a strong base is weak and vice-versa.
The pH is the measurement scale of acidity of any solution which is obtained by measuring the concentration of
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
LCPO CHEMISTRY W/MODIFIED MASTERING
- In this section, you should record any visual observations you make (colors, appearances of water, physical states, etc) for electrochemistry redox reaction (Oxidation Reduction)experiment. You should also record any numeric observations (masses, volumes, concentrations).Make sure they are organized and labeled so it is clear what the observation of electrochemistry redox reaction (Oxidation Reduction)experiment. Here is the data for the electrochemistry redox reaction (Oxidation Reduction)experiment: Part 1 was testing the observed vs theoretical cell potentials for the following voltaic cells: Zn/Cu reading was 0.914 Zn/Al reading was 0.210 Zn/Ag reading was 1.330 Al/Cu reading was 0.672 Ag/Cu reading was 0.413 Ag/Al reading was 1.000 Part 2 of the experiment was constructed an electrolytic cell using 2.008 grams of KI in about 100mL of DI water. Then measured the pH of the reaction mixture which was 5.22 with soultion in plain water and 10.74 with soultion added.arrow_forwardDescribe the topics studying for the electrochemistry redox reaction (Oxidation Reduction) experiment. What is the main point of this experiment? Why are we doing it?What should we get out of it?arrow_forwardPlease correct answer and don't use hand ratingarrow_forward
- Give detailed with explanation needed....don't give Ai generated solutionarrow_forwardGive detailed mechanism Solution with explanation needed. Don't give Ai generated solutionarrow_forwardFor the second part of the experiment, I constructed an electrolytic cell using 2.008 grams of KI in about 100mL of DI water. I measured the pH of the reaction mixture which was 5.22 with soultion in plain water and 10.74 with soultion added. Calculate using your measured pH values at the beginning and end of the reaction, determine the mass of I2 producedarrow_forward
- Explain the mechanism and show the stepsarrow_forwardCan you explain the mechanism and show the stepsarrow_forwardDraw the product of the reaction shown below. Ignore inorganic byproducts. If the reaction results in a mixture of ortho and para isomers, draw only the para-product. CH3C(O)CI AlCl3 Drawingarrow_forward
- Can you explain it? How to find the answer? And the various factors that involved E2? What is the difference between the options? What determine nucleophile is better in protic/aproticarrow_forwardExplain each examples and the options and why they are not the answerarrow_forwardIn this section, you should record any visual observations you make (colors, appearances of water, physical states, etc) for electrochemistry redox reaction (Oxidation Reduction)experiment. You should also record any numeric observations (masses, volumes, concentrations).Make sure they are organized and labeled so it is clear what the observation of electrochemistry redox reaction (Oxidation Reduction)experiment. Here is the data for the electrochemistry redox reaction (Oxidation Reduction)experiment: The first part was testing the observed vs theoretical cell potentials for the following voltaic cells: Zn/Cu reading was 0.914 Zn/Al reading was 0.210 Zn/Ag reading was 1.330 Al/Cu reading was 0.672 Ag/Cu reading was 0.413 Ag/Al reading was 1.000 The second part of the experiment was constructed an electrolytic cell using 2.008 grams of KI in about 100mL of DI water. Then measured the pH of the reaction mixture which was 5.22 with soultion in plain water and 10.74 with soultion added.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY