LCPO CHEMISTRY W/MODIFIED MASTERING
8th Edition
ISBN: 9780135214756
Author: Robinson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 17.146MP
Interpretation Introduction
(a)
Interpretation:
It should be shown that the principal reaction is
Concept introduction:
The principle reaction is the reaction that has the largest equilibrium constant.
Interpretation Introduction
(b)
Interpretation:
It should be shown that the pH at the first equivalence point equals the average of pKa1 and pKa2.
Concept introduction:
The equivalence point is the volume of titrant consumed to completely neutralize the analyte solution.
Interpretation Introduction
(c)
Interpretation:
Number of A2 - ions are present in 50.0 mL of 1.0 M NaHA should be determined.
Concept introduction:
The principle reaction at the first equivalence point is
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
I
Draw the anti-Markovnikov product of the hydration of this alkene.
this problem.
Note for advanced students: draw only one product, and don't worry about showing any stereochemistry. Drawing dash and wedge bonds has been disabled for
esc
esc
☐
Explanation
Check
F1
1
2
F2
# 3
F3
+
$
14
×
1. BH THE
BH3
2. H O NaOH
'2 2'
Click and drag to start
drawing a structure.
F4
Q
W
E
R
A
S
D
%
905
LL
F5
F6
F7
© 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility
<
&
6
7
27
8
T
Y
U
G
H
I
F8
F9
F10
F11
F12
9
0
J
K
L
P
+ //
command option
Z
X
C
V B
N
M
H
H
rol
option
command
AG/F-2° V
3. Before proceeding with this problem you may want to glance at p. 466 of your textbook
where various oxo-phosphorus derivatives and their oxidation states are summarized.
Shown below are Latimer diagrams for phosphorus at pH values at 0 and 14:
-0.93
+0.38
-0.50
-0.51 -0.06
H3PO4 →H4P206 →H3PO3 →→H3PO₂ → P → PH3
Acidic solution
Basic solution
-0.28
-0.50
3--1.12
-1.57
-2.05 -0.89
PO HPO H₂PO₂ →P → PH3
-1.73
a) Under acidic conditions, H3PO4 can be reduced into H3PO3 directly (-0.28V), or via the
formation and reduction of H4P206 (-0.93/+0.38V). Calculate the values of AG's for both
processes; comment.
(3 points)
0.5
PH
P
0.0
-0.5
-1.0-
-1.5-
-2.0
H.PO,
-2.3+
-3 -2
-1
1
2
3
2
H,PO,
b) Frost diagram for phosphorus under acidic
conditions is shown. Identify possible
disproportionation and comproportionation processes;
write out chemical equations describing them. (2 points)
H,PO
4
S
Oxidation stale, N
Chapter 17 Solutions
LCPO CHEMISTRY W/MODIFIED MASTERING
Ch. 17 - Write a balanced net ionic equation for the...Ch. 17 - APPLY 16.2 Write balanced net ionic equations for...Ch. 17 - PRACTICE 16.3 Calculate the concentrations of all...Ch. 17 - APPLY 16.4 Calculate the pH of a solution prepared...Ch. 17 - Conceptual PRACTICE 16.5 The following pictures...Ch. 17 - Conceptual APPLY 16.6 The following pictures...Ch. 17 - Calculate the pH of 0.100 1 of a buffer solution...Ch. 17 - Calculate the change in pH when 0.002 mol of HNO3...Ch. 17 - PRACTICE 16.10 Use the Henderson-Hasselbalch...Ch. 17 - APPLY 16.11 The of the amine group of the amino...
Ch. 17 - PRACTICE 16.12 How would you prepare anbuffer...Ch. 17 - APPLY 16.13 Suppose you are performing an...Ch. 17 - A 40.0 mL volume of 0.100 M HCl is titrated with...Ch. 17 - APPLY 16.15 A 40.0 mL volume of 0.100 M NaOH is...Ch. 17 - What is the pH at the equivalence point in the...Ch. 17 - The following pictures represent solutions at...Ch. 17 - Assume that 40.0 mL of 0.0800...Ch. 17 - Assume that 40.0 mL of a 0.0250 M solution of the...Ch. 17 - Write the equilibrium-constant expression for...Ch. 17 - The following pictures represent solutions of...Ch. 17 - Prob. 17.21PCh. 17 - Ca2, which causes clotting, is removed from...Ch. 17 - What is the molar solubility of Ag2CrO4 in water...Ch. 17 - Prior to having an X-ray exam of the upper...Ch. 17 - Calculate the molar solubility of MgF2 , in...Ch. 17 - Calculate the molar solubility of Zn(OH)2 , in a...Ch. 17 - In an excess of NH3(aq),Cu2+ ion forms a deep blue...Ch. 17 - Cyanide ion is used in gold mining because it...Ch. 17 - Prob. 17.29PCh. 17 - Prob. 17.30ACh. 17 - Prob. 17.31PCh. 17 - Will a precipitate form on mixing 25 m1 of...Ch. 17 - Prob. 17.33PCh. 17 - Prob. 17.34PCh. 17 - HCO3 And CO32 are the primary ions in the ocean...Ch. 17 - Coral and the shells of marine organisms are made...Ch. 17 - The following reactions represent the dissolution...Ch. 17 - Prob. 17.38CPCh. 17 - The following pictures represent initial...Ch. 17 - Prob. 17.40CPCh. 17 - The following plot shows two pH titration curves,...Ch. 17 - Prob. 17.42CPCh. 17 - The following pictures represent solutions at...Ch. 17 - Prob. 17.44CPCh. 17 - Prob. 17.45CPCh. 17 - Prob. 17.46CPCh. 17 - 16.50 Is the pH greater than, equal to, or less...Ch. 17 - Is the pH greater than, equal to, or less than 7...Ch. 17 - Prob. 17.49SPCh. 17 - Prob. 17.50SPCh. 17 - Prob. 17.51SPCh. 17 - Prob. 17.52SPCh. 17 - 16.56 The equilibrium constant for the...Ch. 17 - 16.57 The equilibrium constant for the...Ch. 17 - 16.58 Does the pH increase, decrease, or remain...Ch. 17 - 16.59 Does the pH increase, decrease, or remain...Ch. 17 - 16.60 Calculate the pH of a solution that is 0.25...Ch. 17 - Prob. 17.58SPCh. 17 - Prob. 17.59SPCh. 17 - The pH of a solution of NH3 and NH4Br is 8.90....Ch. 17 - Prob. 17.61SPCh. 17 - Prob. 17.62SPCh. 17 - Prob. 17.63SPCh. 17 - Which of the following gives a buffer solution...Ch. 17 - Prob. 17.65SPCh. 17 - Prob. 17.66SPCh. 17 - Prob. 17.67SPCh. 17 - Calculate the pH of a buffer solution prepared by...Ch. 17 - Prob. 17.69SPCh. 17 - Calculate the pH of 0.375 L of a 0.18 M acetic...Ch. 17 - Prob. 17.71SPCh. 17 - A food chemist studying the formation of lactic...Ch. 17 - Prob. 17.73SPCh. 17 - Prob. 17.74SPCh. 17 - Prob. 17.75SPCh. 17 - Give a recipe for preparing a CH3CO2HCH3C02NA Na...Ch. 17 - Prob. 17.77SPCh. 17 - Prob. 17.78SPCh. 17 - Consider a buffer solution that contains equal...Ch. 17 - Calculate the concentrations of NH4+ and NH3 and...Ch. 17 - Prob. 17.81SPCh. 17 - Make a rough plot of pH versus milliliters of acid...Ch. 17 - Prob. 17.83SPCh. 17 - Consider the titration of 50.0 mL of 0.116 M NaOH...Ch. 17 - Prob. 17.85SPCh. 17 - Consider the titration of 25.0 mL of 0.200 MHCO2H...Ch. 17 - On the same graph, sketch pH titration curves for...Ch. 17 - Prob. 17.88SPCh. 17 - A 100.0 mL sample of 0.100 M methylamine (...Ch. 17 - A 50.0 mL sample of 0.250 M ammonia (...Ch. 17 - Prob. 17.91SPCh. 17 - Prob. 17.92SPCh. 17 - Prob. 17.93SPCh. 17 - What is the pH at the equivalence point for the...Ch. 17 - Consider the titration of 50.0 mL of a 0.100 M...Ch. 17 - Prob. 17.96SPCh. 17 - Prob. 17.97SPCh. 17 - The titration of 0.02500 L of a diprotic acid...Ch. 17 - Prob. 17.99SPCh. 17 - Prob. 17.100SPCh. 17 - Prob. 17.101SPCh. 17 - Prob. 17.102SPCh. 17 - Prob. 17.103SPCh. 17 - Prob. 17.104SPCh. 17 - Prob. 17.105SPCh. 17 - Use the following solubility data to calculate a...Ch. 17 - Prob. 17.107SPCh. 17 - Prob. 17.108SPCh. 17 - Prob. 17.109SPCh. 17 - Prob. 17.110SPCh. 17 - Prob. 17.111SPCh. 17 - Prob. 17.112SPCh. 17 - Which of the following compounds are more soluble...Ch. 17 - Prob. 17.114SPCh. 17 - Consider saturated solutions of the slightly...Ch. 17 - Prob. 17.116SPCh. 17 - Is the solubility of Zn(OH)2 , increased,...Ch. 17 - Is the solubility of Fe(OH)3 increased, decreased,...Ch. 17 - Prob. 17.119SPCh. 17 - Prob. 17.120SPCh. 17 - Prob. 17.121SPCh. 17 - Prob. 17.122SPCh. 17 - Prob. 17.123SPCh. 17 - Calculate the molar solubility of Cr(OH)3 in 0.50...Ch. 17 - Zinc hydroxide, Zn(OH)2 = (kSP=4.11017) , is...Ch. 17 - Prob. 17.126SPCh. 17 - Prob. 17.127SPCh. 17 - “Hard” water contains alkaline earth cations such...Ch. 17 - Prob. 17.129SPCh. 17 - Prob. 17.130SPCh. 17 - Prob. 17.131SPCh. 17 - Prob. 17.132SPCh. 17 - Prob. 17.133SPCh. 17 - Prob. 17.134SPCh. 17 - Prob. 17.135SPCh. 17 - Using the qualitative analysis flowchart in Figure...Ch. 17 - Give a method for separating the following pairs...Ch. 17 - Prob. 17.138SPCh. 17 - Prob. 17.139SPCh. 17 - Prob. 17.140MPCh. 17 - Calculate the molar solubility of MnS in a 0.30 M...Ch. 17 - Prob. 17.142MPCh. 17 - A 100.0 mL sample of a solution that is 0.100 M in...Ch. 17 - A 0.0100mol sample of solid Cd(OH)2(Ksp=5.31015)...Ch. 17 - One type of kidney stone is a precipitate of...Ch. 17 - Prob. 17.146MPCh. 17 - Ethylenediamine ( NH2CH2CH2NH2 , abbreviated en)...Ch. 17 - A 40.0 mL sample of a mixture of HCI and H3PO4 was...Ch. 17 - A 1.000 L sample of HCI gas at 25 °C and 732.0 mm...Ch. 17 - Prob. 17.150MPCh. 17 - Consider the reaction that occurs on mixing 50.0...Ch. 17 - In qualitative analysis, Ca2+ and Ba2+ are...Ch. 17 - A railroad tank car derails and spills 36 tons of...Ch. 17 - Some progressive hair coloring products marketed...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 4. For the following complexes, draw the structures and give a d-electron count of the metal: a) Tris(acetylacetonato)iron(III) b) Hexabromoplatinate(2-) c) Potassium diamminetetrabromocobaltate(III) (6 points)arrow_forward2. Calculate the overall formation constant for [Fe(CN)6]³, given that the overall formation constant for [Fe(CN)6] 4 is ~1032, and that: Fe3+ (aq) + e = Fe²+ (aq) E° = +0.77 V [Fe(CN)6]³ (aq) + e¯ = [Fe(CN)6] (aq) E° = +0.36 V (4 points)arrow_forward5. Consider the compounds shown below as ligands in coordination chemistry and identify their denticity; comment on their ability to form chelate complexes. (6 points) N N A B N N N IN N Carrow_forward
- 1. Use standard reduction potentials to rationalize quantitatively why: (6 points) (a) Al liberates H2 from dilute HCl, but Ag does not; (b) Cl2 liberates Br2 from aqueous KBr solution, but does not liberate C12 from aqueous KCl solution; c) a method of growing Ag crystals is to immerse a zinc foil in an aqueous solution of AgNO3.arrow_forwardWhat would be the best choices for the missing reagents 1 and 3 in this synthesis? 1 1. PPh3 2. n-BuLi 3 2 • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Click and drag to start drawing a structure. Xarrow_forwardWhat is the missing reactant R in this organic reaction? N N H3O+ +R + • Draw the structure of R in the drawing area below. • Be sure to use wedge and dash bonds if it's necessary to draw one particular enantiomer. Click and drag to start drawing a structure. fmarrow_forward
- The product on the right-hand side of this reaction can be prepared from two organic reactants, under the conditions shown above and below the arrow. Draw 1 and 2 below, in any arrangement you like. 1+2 NaBH3CN H+ N Click and drag to start drawing a structure. 5arrow_forwardAssign this HSQC Spectrum ( please editing clearly on the image)arrow_forward(a 4 shows scanning electron microscope (SEM) images of extruded actions of packing bed for two capillary columns of different diameters, al 750 (bottom image) and b) 30-μm-i.d. Both columns are packed with the same stationary phase, spherical particles with 1-um diameter. A) When the columns were prepared, the figure shows that the column with the larger diameter has more packing irregularities. Explain this observation. B) Predict what affect this should have on band broadening and discuss your prediction using the van Deemter terms. C) Does this figure support your explanations in application question 33? Explain why or why not and make any changes in your answers in light of this figure. Figure 4 SEM images of sections of packed columns for a) 750 and b) 30-um-i.d. capillary columns.³arrow_forward
- fcrip = ↓ bandwidth Il temp 32. What impact (increase, decrease, or no change) does each of the following conditions have on the individual components of the van Deemter equation and consequently, band broadening? Increase temperature Longer column Using a gas mobile phase instead of liquid Smaller particle stationary phase Multiple Paths Diffusion Mass Transferarrow_forward34. Figure 3 shows Van Deemter plots for a solute molecule using different column inner diameters (i.d.). A) Predict whether decreasing the column inner diameters increase or decrease bandwidth. B) Predict which van Deemter equation coefficient (A, B, or C) has the greatest effect on increasing or decreasing bandwidth as a function of i.d. and justify your answer. Figure 3 Van Deemter plots for hydroquinone using different column inner diameters (i.d. in μm). The data was obtained from liquid chromatography experiments using fused-silica capillary columns packed with 1.0-μm particles. 35 20 H(um) 큰 20 15 90 0+ 1500 100 75 550 01 02 594 05 μ(cm/sec) 30 15 10arrow_forwardelow are experimentally determined van Deemter plots of column efficiency, H, vs. flow rate. H is a quantitative measurement of band broadening. The left plot is for a liquid chromatography application and the night is for gas chromatography. Compare and contrast these two plots in terms of the three band broadening mechanisms presented in this activity. How are they similar? How do they differ? Justify your answers.? 0.4 H (mm) 0.2 0.1- 0.3- 0 0.5 H (mm) 8.0 7.0 6.0 5.0 4.0- 3.0 T +++ 1.0 1.5 0 2.0 4.0 Flow Rate, u (cm/s) 6.0 8.0 Flow Rate, u (cm/s)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning

General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning

Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning

Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning

Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY