Whether Co 2 + can be separated from Zn 2 + or not should be determined. Concept introduction: Solubility product in acid is equilibrium constant for reaction that occurs in acid solution when an ionic compound is dissolved to produce ions. It is represented by K spa . Consider MS an ionic compound dissolved in acidic solution. Its dissociation occurs as: MS ( s ) + 2H 3 O + ( a q ) ⇌ M 2 + ( a q ) + H 2 S ( a q ) + 2H 2 O ( l ) The expression for its K spa is as follows: K spa = [ M 2 + ] [ H 2 S ] [ H 3 O + ] A precipitate of an ionic compound will form when solutions that contain respective ions are mixed. The precipitation depends on value of reaction quotient Q c . Q c is defined in same way as K spa . Also, concentrations in the expression for Q c are concentration at time t and not equilibrium concentrations. Consider MS to be an ionic compound. Its dissociation occurs as: MS ( s ) + 2H 3 O + ( a q ) ⇌ M 2 + ( a q ) + H 2 S ( a q ) + 2H 2 O ( l ) The expression for Q c is as follows: Q c = [ M 2 + ] [ H 2 S ] [ H 3 O + ] Metal cations can be separated into two groups by the precipitation of metal sulfide. The cations which form very insoluble sulfides can be separated from cations which form soluble sulfides. The separation takes place in an acidic solution and use solubility equilibrium. The separation depends on the H 3 O + concentration so that reaction quotient Q c exceeds K spa for insoluble sulfides but not for soluble sulfide. As a result, insoluble sulfides precipitate under acidic condition but soluble sulfides remain in solution.
Whether Co 2 + can be separated from Zn 2 + or not should be determined. Concept introduction: Solubility product in acid is equilibrium constant for reaction that occurs in acid solution when an ionic compound is dissolved to produce ions. It is represented by K spa . Consider MS an ionic compound dissolved in acidic solution. Its dissociation occurs as: MS ( s ) + 2H 3 O + ( a q ) ⇌ M 2 + ( a q ) + H 2 S ( a q ) + 2H 2 O ( l ) The expression for its K spa is as follows: K spa = [ M 2 + ] [ H 2 S ] [ H 3 O + ] A precipitate of an ionic compound will form when solutions that contain respective ions are mixed. The precipitation depends on value of reaction quotient Q c . Q c is defined in same way as K spa . Also, concentrations in the expression for Q c are concentration at time t and not equilibrium concentrations. Consider MS to be an ionic compound. Its dissociation occurs as: MS ( s ) + 2H 3 O + ( a q ) ⇌ M 2 + ( a q ) + H 2 S ( a q ) + 2H 2 O ( l ) The expression for Q c is as follows: Q c = [ M 2 + ] [ H 2 S ] [ H 3 O + ] Metal cations can be separated into two groups by the precipitation of metal sulfide. The cations which form very insoluble sulfides can be separated from cations which form soluble sulfides. The separation takes place in an acidic solution and use solubility equilibrium. The separation depends on the H 3 O + concentration so that reaction quotient Q c exceeds K spa for insoluble sulfides but not for soluble sulfide. As a result, insoluble sulfides precipitate under acidic condition but soluble sulfides remain in solution.
Solution Summary: The author explains that Co2+ is an equilibrium constant for reaction that occurs when an ionic compound is dissolved to produce ions.
Whether Co2+ can be separated from Zn2+ or not should be determined.
Concept introduction:
Solubility product in acid is equilibrium constant for reaction that occurs in acid solution when an ionic compound is dissolved to produce ions. It is represented by Kspa. Consider MS an ionic compound dissolved in acidic solution. Its dissociation occurs as:
MS(s)+2H3O+(aq)⇌M2+(aq)+H2S(aq)+2H2O(l)
The expression for its Kspa is as follows:
Kspa=[M2+][H2S][H3O+]
A precipitate of an ionic compound will form when solutions that contain respective ions are mixed. The precipitation depends on value of reaction quotient Qc. Qc is defined in same way as Kspa. Also, concentrations in the expression for Qc are concentration at time t and not equilibrium concentrations. Consider MS to be an ionic compound. Its dissociation occurs as:
MS(s)+2H3O+(aq)⇌M2+(aq)+H2S(aq)+2H2O(l)
The expression for Qc is as follows:
Qc=[M2+][H2S][H3O+]
Metal cations can be separated into two groups by the precipitation of metal sulfide. The cations which form very insoluble sulfides can be separated from cations which form soluble sulfides. The separation takes place in an acidic solution and use solubility equilibrium.
The separation depends on the H3O+ concentration so that reaction quotient Qc exceeds Kspa for insoluble sulfides but not for soluble sulfide. As a result, insoluble sulfides precipitate under acidic condition but soluble sulfides remain in solution.
These are in the wrong boxes. Why does the one on the left have a lower molar mass than the one on the right?
SYNTHESIS REACTIONS. For the following reactions, synthesize the given products from the given reactants.
Multiple reactions/steps will be needed. For the one of the steps (ie reactions) in each synthesis, write out the
mechanism for that reaction and draw an energy diagram showing the correct number of hills and valleys for
that step's mechanism.
CI
b.
a.
Use acetylene (ethyne)
and any alkyl halide as
your starting materials
Br
C.
d.
"OH
OH
III.
OH
Calculate the pH and the pOH of each of the following solutions at 25 °C for which the substances ionize completely:
(a) 0.200 M HCl
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell