VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS
12th Edition
ISBN: 9781260265521
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 16.2, Problem 16.F7P
To determine
A free body diagram and KD of rod.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 2.2: The 20-lb disk rests on the 5-lb plate. A cord is wrapped around the periphery
of the disk and attached to the wall at B. Determine the needed torque M
applied to the disk so that the end C of the plate to travel 16 ft and strike the
wall for Is. Assume the disk does not slip on the plate and the plate rests on
the surface at D having a coefficient of kinetic friction of = 0.1. Neglect
the mass of the cord.
148
The uniform 99-lb log is supported by the two cables and used as a battering ram. If the log is released from rest in the position
shown, calculate the initial tension induced in each cable immediately after release and the corresponding angular acceleration a of
the cables.
Assume a = 3.9 ft, b = 2.9 ft, c = 1.3 ft, e = 61°.
a
a
C
Answers:
TA =
i
21.6
Ib
TB =
i
64.9
Ib
a =
4.00
rad/sec?
Please solve this question in dynamics
Chapter 16 Solutions
VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS
Ch. 16.1 - Two pendulums, A and B, with the masses and...Ch. 16.1 - Two pendulums, A and B, with the masses and...Ch. 16.1 - Two solid cylinders, A and B, have the same mass m...Ch. 16.1 - A 6-ft board is placed in a truck with one end...Ch. 16.1 - Prob. 16.F2PCh. 16.1 - Two uniform disks and two cylinders are assembled...Ch. 16.1 - Prob. 16.F4PCh. 16.1 - A 60-Ib uniform thin panel is placed in a truck...Ch. 16.1 - A 60-lb uniform thin panel is placed in a truck...Ch. 16.1 - Knowing that the coefficient of static friction...
Ch. 16.1 - Prob. 16.4PCh. 16.1 - A uniform rod BC of mass 4 kg is connected to a...Ch. 16.1 - A 2000-kg truck is being used to lift a 400-kg...Ch. 16.1 - The support bracket shown is used to transport a...Ch. 16.1 - Prob. 16.8PCh. 16.1 - A 20-kg cabinet is mounted on casters that allow...Ch. 16.1 - Prob. 16.10PCh. 16.1 - A completely filled barrel and its contents have a...Ch. 16.1 - A 40-kg vase has a 200-mm-diameter base and is...Ch. 16.1 - Prob. 16.13PCh. 16.1 - Bars AB and BE, each with a mass of 4 kg, are...Ch. 16.1 - At the instant shown, the tensions in the vertical...Ch. 16.1 - Three bars, each of mass 3 kg, are welded together...Ch. 16.1 - Prob. 16.17PCh. 16.1 - Prob. 16.18PCh. 16.1 - Prob. 16.19PCh. 16.1 - The coefficients of friction between the 30-lb...Ch. 16.1 - Prob. 16.21PCh. 16.1 - Prob. 16.22PCh. 16.1 - Prob. 16.23PCh. 16.1 - Prob. 16.24PCh. 16.1 - Prob. 16.25PCh. 16.1 - Prob. 16.26PCh. 16.1 - Prob. 16.27PCh. 16.1 - Solve Prob. 16.27, assuming that the initial...Ch. 16.1 - The 100-mm-radius brake drum is attached to a...Ch. 16.1 - The 180-mm-radius disk is at rest when it is...Ch. 16.1 - Solve Prob. 16.30, assuming that the direction of...Ch. 16.1 - In order to determine the mass moment of inertia...Ch. 16.1 - Prob. 16.33PCh. 16.1 - Each of the double pulleys shown has a mass moment...Ch. 16.1 - Prob. 16.35PCh. 16.1 - Solve Prob. 16.35, assuming that the couple M is...Ch. 16.1 - Gear A weighs 1 lb and has a radius of gyration of...Ch. 16.1 - The 25-lb double pulley shown is at rest and in...Ch. 16.1 - A belt of negligible mass passes between cylinders...Ch. 16.1 - Solve Prob. 16.39 for P=2.00lb .Ch. 16.1 - Disk A has a mass of 6 kg and an initial angular...Ch. 16.1 - Prob. 16.42PCh. 16.1 - Prob. 16.43PCh. 16.1 - Disk B is at rest when it is brought into contact...Ch. 16.1 - Cylinder A has an initial angular velocity of 720...Ch. 16.1 - Prob. 16.46PCh. 16.1 - Prob. 16.47PCh. 16.1 - Prob. 16.48PCh. 16.1 - (a) In Prob. 16.48, determine the point of the rod...Ch. 16.1 - A force P with a magnitude of 3 N is applied to a...Ch. 16.1 - Prob. 16.51PCh. 16.1 - A 250-lb satellite has a radius of gyration of 24...Ch. 16.1 - Prob. 16.53PCh. 16.1 - A uniform semicircular plate with a mass of 6 kg...Ch. 16.1 - Prob. 16.55PCh. 16.1 - Prob. 16.56PCh. 16.1 - The 12-lb uniform disk shown has a radius of r=3.2...Ch. 16.1 - Prob. 16.58PCh. 16.1 - Prob. 16.59PCh. 16.1 - Prob. 16.60PCh. 16.1 - The 400-lb crate shown is lowered by means of two...Ch. 16.1 - Prob. 16.62PCh. 16.1 - Prob. 16.63PCh. 16.1 - A beam AB with a mass m and of uniform...Ch. 16.1 - Prob. 16.65PCh. 16.1 - Prob. 16.66PCh. 16.1 - Prob. 16.67PCh. 16.1 - Prob. 16.68PCh. 16.1 - Prob. 16.69PCh. 16.1 - Solve Prob. 16.69, assuming that the sphere is...Ch. 16.1 - A bowler projects an 8-in.-diameter ball weighing...Ch. 16.1 - Solve Prob. 16.71, assuming that the bowler...Ch. 16.1 - A uniform sphere of radius r and mass m is placed...Ch. 16.1 - A sphere of radius r and mass m has a linear...Ch. 16.2 - A cord is attached to a spool when a force P is...Ch. 16.2 - A cord is attached to a spool when a force P is...Ch. 16.2 - A front-wheel-drive car starts from rest and...Ch. 16.2 - A front-wheel-drive car starts from rest and...Ch. 16.2 - Prob. 16.F5PCh. 16.2 - Prob. 16.F6PCh. 16.2 - Prob. 16.F7PCh. 16.2 - Prob. 16.F8PCh. 16.2 - Show that the couple I of Fig. 16.15 can be...Ch. 16.2 - Prob. 16.76PCh. 16.2 - Prob. 16.77PCh. 16.2 - A uniform slender rod of length L=36 in. and...Ch. 16.2 - Prob. 16.79PCh. 16.2 - Prob. 16.80PCh. 16.2 - Prob. 16.81PCh. 16.2 - Prob. 16.82PCh. 16.2 - Prob. 16.83PCh. 16.2 - A uniform rod of length L and mass m is supported...Ch. 16.2 - Prob. 16.85PCh. 16.2 - Prob. 16.86PCh. 16.2 - Prob. 16.87PCh. 16.2 - Two identical 4-lb slender rods AB and BC are...Ch. 16.2 - Prob. 16.89PCh. 16.2 - Prob. 16.90PCh. 16.2 - Prob. 16.91PCh. 16.2 - Prob. 16.92PCh. 16.2 - Prob. 16.93PCh. 16.2 - Prob. 16.94PCh. 16.2 - A homogeneous sphere S, a uniform cylinder C, and...Ch. 16.2 - Prob. 16.96PCh. 16.2 - Prob. 16.97PCh. 16.2 - Prob. 16.98PCh. 16.2 - Prob. 16.99PCh. 16.2 - A drum of 80-mm radius is attached to a disk of...Ch. 16.2 - Prob. 16.101PCh. 16.2 - Prob. 16.102PCh. 16.2 - Prob. 16.103PCh. 16.2 - Prob. 16.104PCh. 16.2 - Prob. 16.105PCh. 16.2 - A 12-in.-radius cylinder of weight 16 lb rests on...Ch. 16.2 - A 12-in.-radius cylinder of weight 16 lb rests on...Ch. 16.2 - Gear C has a mass of 5 kg and a centroidal radius...Ch. 16.2 - Two uniform disks A and B, each with a mass of 2...Ch. 16.2 - Prob. 16.110PCh. 16.2 - Prob. 16.111PCh. 16.2 - Prob. 16.112PCh. 16.2 - Prob. 16.113PCh. 16.2 - A small clamp of mass mBis attached at B to a hoop...Ch. 16.2 - Prob. 16.115PCh. 16.2 - A 4-lb bar is attached to a 10-lb uniform cylinder...Ch. 16.2 - The uniform rod AB with a mass m and a length of...Ch. 16.2 - Prob. 16.118PCh. 16.2 - A 40-lb ladder rests against a wall when the...Ch. 16.2 - A beam AB of length L and mass m is supported by...Ch. 16.2 - End A of the 6-kg uniform rod AB rests on the...Ch. 16.2 - Prob. 16.122PCh. 16.2 - Prob. 16.123PCh. 16.2 - The 4-kg uniform rod ABD is attached to the crank...Ch. 16.2 - The 3-lb uniform rod BD is connected to crank AB...Ch. 16.2 - Prob. 16.126PCh. 16.2 - Prob. 16.127PCh. 16.2 - Prob. 16.128PCh. 16.2 - Prob. 16.129PCh. 16.2 - Prob. 16.130PCh. 16.2 - Prob. 16.131PCh. 16.2 - Prob. 16.132PCh. 16.2 - Prob. 16.133PCh. 16.2 - Prob. 16.134PCh. 16.2 - Prob. 16.135PCh. 16.2 - The 6-kg rod BC connects a 10-kg disk centered at...Ch. 16.2 - In the engine system shown, l=250 mm and b=100 mm....Ch. 16.2 - Solve Prob. 16.137 when =90 .Ch. 16.2 - The 4-lb uniform slender rod AB, the 8-lb uniform...Ch. 16.2 - Prob. 16.140PCh. 16.2 - Two rotating rods in the vertical plane are...Ch. 16.2 - Prob. 16.142PCh. 16.2 - Prob. 16.143PCh. 16.2 - Prob. 16.144PCh. 16.2 - Prob. 16.145PCh. 16.2 - Prob. 16.146PCh. 16.2 - Prob. 16.147PCh. 16.2 - Prob. 16.148PCh. 16.2 - Prob. 16.149PCh. 16.2 - Prob. 16.150PCh. 16.2 - (a) Determine the magnitude and the location of...Ch. 16.2 - Draw the shear and bending-moment diagrams for the...Ch. 16 - A cyclist is riding a bicycle at a speed of 20 mph...Ch. 16 - Prob. 16.154RPCh. 16 - The total mass of the Baja car and driver,...Ch. 16 - Prob. 16.156RPCh. 16 - Prob. 16.157RPCh. 16 - Prob. 16.158RPCh. 16 - A bar of mass m=5 kg is held as shown between four...Ch. 16 - A uniform plate of mass m is suspended in each of...Ch. 16 - Prob. 16.161RPCh. 16 - Two 3-kg uniform bars are connected to form the...Ch. 16 - Prob. 16.163RPCh. 16 - Prob. 16.164RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Find the smallest distance d for which the hook will remain at rest when acted on by the force P. Neglect the weight of the hook, and assume that the vertical wall is frictionless.arrow_forwardThe simple 2.3-kg pendulum is released from rest in the horizontal position. As it reaches the bottom position, the cord wraps around the smooth fixed pin at B and continues in the smaller arc in the vertical plane. Calculate the magnitude of the force R supported by the pin at B when the pendulum passes the position 8 = 43° 330 mm 2.3 kg B Answer: R= i 90° 720 mm Narrow_forwardThe mechanism shows two identical 2-kg bars that are 0.15 m long each. They are hinged together at the lower ends and are supported at the upper ends by small rollers of negligible mass which roll on a horizontal rail. Determine the steady state angle assumed by the bars when they are accelerating under the action of a constant horizontal force FN. Also, find the forces on the rollers at A and B as well as the reactions at the hinge C. Take the value of the force F is equal to 123.45 Newtons.arrow_forward
- The semicircular disk of mass m = 1.5 kg and radius r = 615 mm is released from rest at θ = 0 and rotates freely in the vertical plane about its fixed bearing at O. Calculate the n- and t-components of the force F on the bearing when θ = 65°. The components Fn and Ft are positive if in the positive n- and t-directions respectively, negative if opposite.arrow_forwardThe 186-lb exerciser is beginning to execute a bicep curl. When in the position shown with his right elbow fixed, he causes the 22-lb cylinder to accelerate upward at the rate 0.30g. Neglect the effects of the mass of his lower arm and estimate the normal reaction forces at A and B. Friction is sufficient to prevent slipping. Calculate the normal reaction forces at A and B.arrow_forwardThe 150 kg spool below is initially at rest and has a radius of gyration of kg 0.5 m. The force Pis applied at B and causes the spool to begin rotating. The rope attached to point A does not slip at its contact point with the spool, meaning that point is an instantaneous center of zero velocity as shown. However, the bottom of the spool slips against the ground, causing a frictional force which acts to the right. After 5 s the angular velocity of the spool is -27 rad/s (using the coordinate system shown, meaning the spool rotates in the clockwise direction). Based on this information: a) Find the moment of inertia of the spool at the instantaneous center of zero velocity. b) Calculate the frictional force exerted on the spool by the ground. c) Using the principal of angular impulse and momentum, determine the coefficient of kinetic friction, r, between the bottom of the spool and the ground. IC 0.75 m 0.25 m P = 800 N 0.5 m Barrow_forward
- H3arrow_forwardSolve the problem correctlyarrow_forwardYour answer is partially correct. The figure shows the cross section of a uniform 174-lb ventilator door hinged about its upper horizontal edge at O. The door is controlled by the spring-loaded cable which passes over the small pulley at A. The spring has a stiffness of 12.7 lb per foot of stretch and is undeformed when = 0. If the door is released from rest in the horizontal position, determine the maximum angular velocity reached by the door and the corresponding angle 0. Answer: Wmax = www 4.2' 0.636 rad/sec at 0 = 58.49 Oarrow_forward
- The homogeneous rectangular plate weighs 40 lb and is supported in a vertical plane by the light parallel links as shown. If a couple M = 80 lb – ft is applied to the end of link AB with the system initially at rest, calculate the force supported by the pin at C as the plate lifts off its support with 0 = 30°. %3D 24" B 16" 16' M 16" D Carrow_forwardThe uniform 15-kg bar is supported on the horizontal surface at A by a small roller of negligible mass. If the coefficient of kinetic friction between end B and the vertical surface is 0.25, calculate the initial acceleration of end A as the bar is released from rest in the position shown. y HA=0.30 40° 2.4 marrow_forwardThe small block B is attached to the vertex A of the right circular cone using a light cord. The cone is rotating at a constant angular velocity about the vertical z-axis such that the block attains a speed of 0.6 m/sec. If the mass of the block is 0.3 kg, determine the tension in the cord by neglecting friction and the size of the block. Present your answer in Newtons using 3 significant figures. 200 mm B 300 mm A 400 mmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Relationship Between Elastic Constants and Connecting Equations; Author: Engineers Academy;https://www.youtube.com/watch?v=whW5PnM7Pug;License: Standard Youtube License