VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS
12th Edition
ISBN: 9781260265521
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16.1, Problem 16.18P
To determine
The vertical component of forces exerted by pins B and D.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 20kg slender rod AB is pinned to a roller at A that slides freely along the slot as shown in the figure below. The rod is released from the rest at an angle of 30. At the same time, a couple moment of M = 5 N.m in clockwise direction is applied at its centre of gravity.
If immediately after the release the acceleration of the roller at A is 43m/s, determine the reaction forces at the pin connection at Point A.
block C weighs 200lb is lifted by hoisting mechanism. the hoist is wrapped around compound drum B. drum b is rotating as a single unit and weighs 300 lbs. K(bar) is 4ft. a hoist tension (P) is rated 1.0 kips. And its power is being maintained by the power in Motor A. Determine the vertical acceleration of the block C and the resultant force on the bearing at O.
Your answer is partially correct.
The figure shows the cross section of a uniform 174-lb ventilator door hinged about its upper horizontal edge at O. The door is
controlled by the spring-loaded cable which passes over the small pulley at A. The spring has a stiffness of 12.7 lb per foot of stretch
and is undeformed when = 0. If the door is released from rest in the horizontal position, determine the maximum angular velocity
reached by the door and the corresponding angle 0.
Answer: Wmax =
www
4.2'
0.636
rad/sec at 0 = 58.49
O
Chapter 16 Solutions
VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS
Ch. 16.1 - Two pendulums, A and B, with the masses and...Ch. 16.1 - Two pendulums, A and B, with the masses and...Ch. 16.1 - Two solid cylinders, A and B, have the same mass m...Ch. 16.1 - A 6-ft board is placed in a truck with one end...Ch. 16.1 - Prob. 16.F2PCh. 16.1 - Two uniform disks and two cylinders are assembled...Ch. 16.1 - Prob. 16.F4PCh. 16.1 - A 60-Ib uniform thin panel is placed in a truck...Ch. 16.1 - A 60-lb uniform thin panel is placed in a truck...Ch. 16.1 - Knowing that the coefficient of static friction...
Ch. 16.1 - Prob. 16.4PCh. 16.1 - A uniform rod BC of mass 4 kg is connected to a...Ch. 16.1 - A 2000-kg truck is being used to lift a 400-kg...Ch. 16.1 - The support bracket shown is used to transport a...Ch. 16.1 - Prob. 16.8PCh. 16.1 - A 20-kg cabinet is mounted on casters that allow...Ch. 16.1 - Prob. 16.10PCh. 16.1 - A completely filled barrel and its contents have a...Ch. 16.1 - A 40-kg vase has a 200-mm-diameter base and is...Ch. 16.1 - Prob. 16.13PCh. 16.1 - Bars AB and BE, each with a mass of 4 kg, are...Ch. 16.1 - At the instant shown, the tensions in the vertical...Ch. 16.1 - Three bars, each of mass 3 kg, are welded together...Ch. 16.1 - Prob. 16.17PCh. 16.1 - Prob. 16.18PCh. 16.1 - Prob. 16.19PCh. 16.1 - The coefficients of friction between the 30-lb...Ch. 16.1 - Prob. 16.21PCh. 16.1 - Prob. 16.22PCh. 16.1 - Prob. 16.23PCh. 16.1 - Prob. 16.24PCh. 16.1 - Prob. 16.25PCh. 16.1 - Prob. 16.26PCh. 16.1 - Prob. 16.27PCh. 16.1 - Solve Prob. 16.27, assuming that the initial...Ch. 16.1 - The 100-mm-radius brake drum is attached to a...Ch. 16.1 - The 180-mm-radius disk is at rest when it is...Ch. 16.1 - Solve Prob. 16.30, assuming that the direction of...Ch. 16.1 - In order to determine the mass moment of inertia...Ch. 16.1 - Prob. 16.33PCh. 16.1 - Each of the double pulleys shown has a mass moment...Ch. 16.1 - Prob. 16.35PCh. 16.1 - Solve Prob. 16.35, assuming that the couple M is...Ch. 16.1 - Gear A weighs 1 lb and has a radius of gyration of...Ch. 16.1 - The 25-lb double pulley shown is at rest and in...Ch. 16.1 - A belt of negligible mass passes between cylinders...Ch. 16.1 - Solve Prob. 16.39 for P=2.00lb .Ch. 16.1 - Disk A has a mass of 6 kg and an initial angular...Ch. 16.1 - Prob. 16.42PCh. 16.1 - Prob. 16.43PCh. 16.1 - Disk B is at rest when it is brought into contact...Ch. 16.1 - Cylinder A has an initial angular velocity of 720...Ch. 16.1 - Prob. 16.46PCh. 16.1 - Prob. 16.47PCh. 16.1 - Prob. 16.48PCh. 16.1 - (a) In Prob. 16.48, determine the point of the rod...Ch. 16.1 - A force P with a magnitude of 3 N is applied to a...Ch. 16.1 - Prob. 16.51PCh. 16.1 - A 250-lb satellite has a radius of gyration of 24...Ch. 16.1 - Prob. 16.53PCh. 16.1 - A uniform semicircular plate with a mass of 6 kg...Ch. 16.1 - Prob. 16.55PCh. 16.1 - Prob. 16.56PCh. 16.1 - The 12-lb uniform disk shown has a radius of r=3.2...Ch. 16.1 - Prob. 16.58PCh. 16.1 - Prob. 16.59PCh. 16.1 - Prob. 16.60PCh. 16.1 - The 400-lb crate shown is lowered by means of two...Ch. 16.1 - Prob. 16.62PCh. 16.1 - Prob. 16.63PCh. 16.1 - A beam AB with a mass m and of uniform...Ch. 16.1 - Prob. 16.65PCh. 16.1 - Prob. 16.66PCh. 16.1 - Prob. 16.67PCh. 16.1 - Prob. 16.68PCh. 16.1 - Prob. 16.69PCh. 16.1 - Solve Prob. 16.69, assuming that the sphere is...Ch. 16.1 - A bowler projects an 8-in.-diameter ball weighing...Ch. 16.1 - Solve Prob. 16.71, assuming that the bowler...Ch. 16.1 - A uniform sphere of radius r and mass m is placed...Ch. 16.1 - A sphere of radius r and mass m has a linear...Ch. 16.2 - A cord is attached to a spool when a force P is...Ch. 16.2 - A cord is attached to a spool when a force P is...Ch. 16.2 - A front-wheel-drive car starts from rest and...Ch. 16.2 - A front-wheel-drive car starts from rest and...Ch. 16.2 - Prob. 16.F5PCh. 16.2 - Prob. 16.F6PCh. 16.2 - Prob. 16.F7PCh. 16.2 - Prob. 16.F8PCh. 16.2 - Show that the couple I of Fig. 16.15 can be...Ch. 16.2 - Prob. 16.76PCh. 16.2 - Prob. 16.77PCh. 16.2 - A uniform slender rod of length L=36 in. and...Ch. 16.2 - Prob. 16.79PCh. 16.2 - Prob. 16.80PCh. 16.2 - Prob. 16.81PCh. 16.2 - Prob. 16.82PCh. 16.2 - Prob. 16.83PCh. 16.2 - A uniform rod of length L and mass m is supported...Ch. 16.2 - Prob. 16.85PCh. 16.2 - Prob. 16.86PCh. 16.2 - Prob. 16.87PCh. 16.2 - Two identical 4-lb slender rods AB and BC are...Ch. 16.2 - Prob. 16.89PCh. 16.2 - Prob. 16.90PCh. 16.2 - Prob. 16.91PCh. 16.2 - Prob. 16.92PCh. 16.2 - Prob. 16.93PCh. 16.2 - Prob. 16.94PCh. 16.2 - A homogeneous sphere S, a uniform cylinder C, and...Ch. 16.2 - Prob. 16.96PCh. 16.2 - Prob. 16.97PCh. 16.2 - Prob. 16.98PCh. 16.2 - Prob. 16.99PCh. 16.2 - A drum of 80-mm radius is attached to a disk of...Ch. 16.2 - Prob. 16.101PCh. 16.2 - Prob. 16.102PCh. 16.2 - Prob. 16.103PCh. 16.2 - Prob. 16.104PCh. 16.2 - Prob. 16.105PCh. 16.2 - A 12-in.-radius cylinder of weight 16 lb rests on...Ch. 16.2 - A 12-in.-radius cylinder of weight 16 lb rests on...Ch. 16.2 - Gear C has a mass of 5 kg and a centroidal radius...Ch. 16.2 - Two uniform disks A and B, each with a mass of 2...Ch. 16.2 - Prob. 16.110PCh. 16.2 - Prob. 16.111PCh. 16.2 - Prob. 16.112PCh. 16.2 - Prob. 16.113PCh. 16.2 - A small clamp of mass mBis attached at B to a hoop...Ch. 16.2 - Prob. 16.115PCh. 16.2 - A 4-lb bar is attached to a 10-lb uniform cylinder...Ch. 16.2 - The uniform rod AB with a mass m and a length of...Ch. 16.2 - Prob. 16.118PCh. 16.2 - A 40-lb ladder rests against a wall when the...Ch. 16.2 - A beam AB of length L and mass m is supported by...Ch. 16.2 - End A of the 6-kg uniform rod AB rests on the...Ch. 16.2 - Prob. 16.122PCh. 16.2 - Prob. 16.123PCh. 16.2 - The 4-kg uniform rod ABD is attached to the crank...Ch. 16.2 - The 3-lb uniform rod BD is connected to crank AB...Ch. 16.2 - Prob. 16.126PCh. 16.2 - Prob. 16.127PCh. 16.2 - Prob. 16.128PCh. 16.2 - Prob. 16.129PCh. 16.2 - Prob. 16.130PCh. 16.2 - Prob. 16.131PCh. 16.2 - Prob. 16.132PCh. 16.2 - Prob. 16.133PCh. 16.2 - Prob. 16.134PCh. 16.2 - Prob. 16.135PCh. 16.2 - The 6-kg rod BC connects a 10-kg disk centered at...Ch. 16.2 - In the engine system shown, l=250 mm and b=100 mm....Ch. 16.2 - Solve Prob. 16.137 when =90 .Ch. 16.2 - The 4-lb uniform slender rod AB, the 8-lb uniform...Ch. 16.2 - Prob. 16.140PCh. 16.2 - Two rotating rods in the vertical plane are...Ch. 16.2 - Prob. 16.142PCh. 16.2 - Prob. 16.143PCh. 16.2 - Prob. 16.144PCh. 16.2 - Prob. 16.145PCh. 16.2 - Prob. 16.146PCh. 16.2 - Prob. 16.147PCh. 16.2 - Prob. 16.148PCh. 16.2 - Prob. 16.149PCh. 16.2 - Prob. 16.150PCh. 16.2 - (a) Determine the magnitude and the location of...Ch. 16.2 - Draw the shear and bending-moment diagrams for the...Ch. 16 - A cyclist is riding a bicycle at a speed of 20 mph...Ch. 16 - Prob. 16.154RPCh. 16 - The total mass of the Baja car and driver,...Ch. 16 - Prob. 16.156RPCh. 16 - Prob. 16.157RPCh. 16 - Prob. 16.158RPCh. 16 - A bar of mass m=5 kg is held as shown between four...Ch. 16 - A uniform plate of mass m is suspended in each of...Ch. 16 - Prob. 16.161RPCh. 16 - Two 3-kg uniform bars are connected to form the...Ch. 16 - Prob. 16.163RPCh. 16 - Prob. 16.164RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Dynamicsarrow_forwardThe 12ft pole AC (negligible mass) lies in the y-z plane and forms a 30° angle with the z-axis. The pole is held in place at point C by a ball-and-socket joint. Two cables, BD and BE, are fixed to the pole at point B (these represent two separate cables attached at B). A 110 lb force pulls downward at the end of pole AC in the vertical direction (y-direction). If the distance between B and C along the feet, determine the Reactions at C (ball-and-socket joint) The tension in cables BD and BE.arrow_forward2. Consider the 5-1lb bar with length of 2½ feet and width of 2 inches. Small frictionless bearings are mounted to the ends, constraining the motion of the bar to the horizontal x and y slots. The bar starts at rest at positioned at 0= 45°. If an angular acceleration of 3 rad/s² is desired, what moment M must be applied to the bar? What are the reaction forces at A and B at that instant? Additional question: Does the width of the bar matter, or is it appropriate to consider the bar as a slender rod? Consider errors of less than 2% negligible.arrow_forward
- The parallelogram linkage shown moves in the vertical plane with the uniform 9.3-kg bar EF attached to the plate at E by a pin which is welded both to the plate and to the bar. A torque (not shown) is applied to link AB through its lower pin to drive the links in a clockwise direction. When e reaches 51°, the links have an angular acceleration and an angular velocity of 7.0 rad/s² and 2.3 rad/s, respectively. For this instant calculate the magnitudes of the force F and torque M supported by the pin at E. Welded 1435 mm pin F 995 995 mm mm B D Horizontal Answers: F = i N M = i N•marrow_forwardThe uniform 24-m robotic arm OB weighs 300 kg and is hinged at its lower end to a fixed support at O. If the actuator C develops a starting torque of 1300 N· m, calculate the total force supported by the pin at O as the arm begins to lift off its support at B. Also find the corresponding angular acceleration a of the robotic link. The cable at A is horizontal, and the mass of the pulleys and the actuator is negligible. (see Figure 2) 1200 mm 30° 16 m Figure 2. 8 m Barrow_forwardThe 544g collar is free to slide on the smooth rod OA. The rod rotates about pin O at constant angular velocity, é. a =en + še, = a = RÔ?e, + RÖe, for a circular path, R = radius 2.1 Use N-T coordinates, draw a FBD and a kinetic diagram to determine the minimum value of é for which the collar will maintain contact with the stop at A throughout the rotation. 2.2 Would friction between the collar and the rod affect your result in 2.1?arrow_forward
- 3. The connecting rod of the steam engine shown schematically is assumed to be a slender uniform rod. 4 ft long weighing 322 Ib. the crank AO is 1ft long and rotates at a constant rate of 10 rad/s. the force on the 64.4 Ib cross-head at the given instant is 2142 Ib. neglecting friction. Determine the normal force on the crosshead and the horizontal and vertical components at crank pin force at A. А 45deg Вarrow_forwardThe figure shows the cross section of a uniform 239-lb ventilator door hinged about its upper horizontal edge at O. The door is controlled by the spring-loaded cable which passes over the small pulley at A. The spring has a stiffness of 16.6 lb per foot of stretch and is undeformed when 8-0. If the door is released from rest in the horizontal position, determine the maximum angular velocity reached by the door and the corresponding angle 0. Answer: @max 4.2¹ rad/sec at 8-iarrow_forwardIf you could while working the problem, draw both the kinematic diagram and free body diagram.arrow_forward
- 6. The uniform ring of mass m = 10 kg and radius r= 0.5 m is hinged at O and can rotate freely in the vertical plane. If the ring is released with a clockwise angular velocity o = 4 rad/s from the position shown where OC is horizontal, determine the magnitude of the reaction at pin O the instant the disk is released. toarrow_forwardA single-cylinder reciprocating engine has a reciprocating mass of 6 kg. the crank rotates at 60 rpm and the stroke is 32 mm the mass of the revolving parts at 16 mm radius is 4 kg, if two-thirds of the reciprocating parts and the whole of the revolving parts are to be balanced. Determine the balance mass required at a radius of 35 mm and unbalanced force when the crank has turned 50° from the TDC. d luokarrow_forwardFour masses m1, m2, m3 and m4 are 10 kg, 20 kg, 30 kg and 40 kg respectively. The corresponding radii of rotation are 0.1 m, 0.15 m, 0.3 m and 0.35 m respectively and the angles between successive masses are 40°, 60° and 120°. Find the position and magnitude of the balance mass required, if its radius of rotation is 0.5 m.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY