Concept explainers
Disk B is at rest when it is brought into contact with disk A, which has an initial angular velocity
i.
Angular velocities have are independent of
Answer to Problem 16.44P
Hence proved, the final angular velocities have are independent of
Explanation of Solution
Given:
Disk A, of mass ma radius of disk A, rA
Initial Angular velocity of disk B =
mass of disk B, mB
radius of disk B, rB
Coefficient of kinetic friction =
Concept used:
When the two disks come in contact, a friction force between them comes into play and it causes the disk A to start rotating while accelerating with a certain angular acceleration in anti-clockwise direction. The reaction of the friction force on disk A will be acting on disk B, such that while it will still be rotating in clockwise direction, but with a certain. angular deacceleration. This will continue till the tangential velocity of both the disks become equal. At that point,
While accelerating from rest for disk A,
While deaccelerating from an angular velocity
Therefore, condition of velocity equivalence is
Further, Mass moment of inertia for a disk is given by-
The tangential force acting on a disk will provide the angular acceleration to the disk. Therefore,
Mass moment of inertia of disk A =
Mass moment of inertia of disk B =
Friction force between two disks, F =
For disk B,
From eq (2)
For disk A,
From eq(2)
Disk A will continue to deaccelerate, and disk B will continue to accelerate till their tangential acceleration becomes equal.
from eq (1)
From equation (3) and (4), we see that the final angular velocities of the two disks are independent of
Conclusion:
Hence proved, the final angular velocities have are independent of
ii.
Angular velocities in terms of in terms od
Answer to Problem 16.44P
Angular velocity of disk is expressed as
Explanation of Solution
Given:
Disk A, of mass ma radius of disk A, rA
Initial Angular velocity of disk B =
mass of disk B, mB
radius of disk B, rB
Coefficient of kinetic friction =
Concept used:
When the two disks come in contact, a friction force between them comes into play and it causes the disk A to start rotating while accelerating with a certain angular acceleration in anti-clockwise direction. The reaction of the friction force on disk A will be acting on disk B, such that while it will still be rotating in clockwise direction, but with a certain. angular deacceleration. This will continue till the tangential velocity of both the disks become equal. At that point,
While accelerating from rest for disk A,
While deaccelerating from an angular velocity
Therefore, condition of velocity equivalence is
Further, Mass moment of inertia for a disk is given by-
The tangential force acting on a disk will provide the angular acceleration to the disk. Therefore,
Mass moment of inertia of disk A =
Mass moment of inertia of disk B =
Friction force between two disks, F =
For disk B,
From eq (2)
For disk A,
From eq(2)
Disk A will continue to deaccelerate, and disk B will continue to accelerate till their tangential acceleration becomes equal.
from eq (1)
Conclusion:
Angular velocity of disk i
Is expressed as
Want to see more full solutions like this?
Chapter 16 Solutions
VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS
- 4. G A micarta pinion rotating at 1200 r.p.m. is to transmit 1 kW to a cast iron gear at a speed of 192 r.p.m. Assuming a starting overload of 20% and using 20° full depth involute teeth, determine the module, number of teeth on the pinion and gear and face width. Take allowable static strength for micarta as 40 MPa and for cast iron as 53 MPa. Check the pair in wear.arrow_forwardI want to solve these choicesarrow_forward2. A spur gear made of bronze drives a mid steel pinion with angular velocity ratio of 32: 1. The pressure angle is 14½. It transmits 5 kW at 1800 r.p.m. of pinion. Considering only strength, design the smallest diameter gears and find also necessary face width. The number of teeth should not be less than 15 teeth on either gear. The elastic strength of bronze may be taken as 84 MPa and of steel as 105 MPa. Lewis factor for 14½½ pressure angle may be taken 0.684 0.124 y = No. of teeth as [Ans. m 3 mm; b= 35 mm; Dp = 48 mm; D= 168 mm]arrow_forward
- Q2. Determine the safety factors for the bracket rod shown in Figure 2 based on both the distortion-energy theory and the maximum shear theory and compare them. Given: The material is 2024-T4 aluminum with a yield strength of 47 000 psi. The rod length /= 6 in. and arm a = 8 in. The rod outside diameter od 1.5 in., id = 1 in, h=2 in., t=0.5 in., Load F= 1000 lb. Assumptions: The load is static and the assembly is at room temperature. Consider shear due to transverse loading as well as other stresses. (Note: solve in SI units) wall tube Figure 2 armarrow_forwardThe question has been set up with all the cuts needed to accurately derive expressions for V(x) and M(x). Using the cuts free body diagrams set up below, derive expressions for V(x) and M(x). If you use the method of cuts then validate your answers using calculus or vice versa.arrow_forwardIt is required to treat 130 kmol/hr of chloroform-air feed gas mixture that contains 12% chloroform. It is required to remove 93% of chloroform using 150 kmol/hr of solvent that contains 99.6% water and 0.4% chloroform. The cross sectional area of the column is 0.8 m². Calculate the column height using the following data; kx'.a = 1.35 (kmol/m³.s (Ax)), and ky'.a = 0.06 (kmol/m³.s (Ay)), kx/ky = 1.35, and the equilibrium data are: X 0 0.0133 0.033 y 0 0.01 0.0266 0.049 0.064 0.0747 0.0933 0.1053 0.0433 0.06 0.0733 0.111 0.1 0.12 0.14arrow_forward
- ४ B: Find the numerical solution for the 2D equation below and calculate the temperature values for each grid point shown in Fig. 2 (show all steps). (Do only one trail using following initial values and show the final matrix) [T1] T₂ T3 [T] 1 = [0] 0 0 d dx dx) (ka)+4(ka) = dy -20xy, k = 1 + 0.3 T ge L=3cm, 4x= Ay B.Cs.: at x=0=LT=0°C at y=0-L T=10°C Fig. (2)arrow_forward: +0 العنوان use only Two rods fins) having same dimensions, one made orass (k = 85 Wm K) and the mer of copper (k = 375 W/m K), having of their ends inserted into a furna. At a section 10.5 cm a way from furnace, the temperature of brass rod 120 Find the distance at which the ame temperature would be reached in the per rod ? both ends are ex osed to the same environment. ns 2.05 ۲/۱ ostrararrow_forwardFor the beam show below, draw A.F.D, S.F.D, B.M.D 6 kN/m 1 M B. 3 M Marrow_forward
- 1. Two long rods of the same diameter-one made of brass (k=85w/m.k) and the other made of copper (k=375 w/m.k) have one of their ends inserted into a furnace (as shown in the following figure). Both rods are exposed to the same environment. At a distance of 105 mm from the furnace, the temperature of the brass rod is 120°C. At what distance from the furnace will the same temperature be reached in the copper rod? Furnace 105 mm T₁ Brass rod ⑪ h Too- x2- Ti Copper rodarrow_forward: +0 العنوان use only Two rods fins) having same dimensions, one made orass (k = 85 Wm K) and the mer of copper (k = 375 W/m K), having of their ends inserted into a furna. At a section 10.5 cm a way from furnace, the temperature of brass rod 120 Find the distance at which the ame temperature would be reached in the per rod ? both ends are ex osed to the same environment. ns 2.05 ۲/۱ ostrararrow_forwardمشر on ۲/۱ Two rods (fins) having same dimensions, one made of brass(k=85 m K) and the other of copper (k = 375 W/m K), having one of their ends inserted into a furnace. At a section 10.5 cm a way from the furnace, the temperature brass rod 120°C. Find the distance at which the same temperature would be reached in the copper rod ? both ends are exposed to the same environment. 22.05 ofthearrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY