EBK CHEMICAL PRINCIPLES
8th Edition
ISBN: 9781305856745
Author: DECOSTE
Publisher: CENGAGE LEARNING - CONSIGNMENT
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 133AE
Interpretation Introduction
Interpretation: The formula of
Concept Introduction: The closest packing structures are explained as most space-efficient and regularly packed structures. This is usually seen in crystals where lattice gives the closest packed structures. In the cubic closest packing, the layers of the closest packed spheres are arranged in such a way that every third layer is laying over one another. A unit cell is defined as the smallest repeating portion in the crystal lattice.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
EBK CHEMICAL PRINCIPLES
Ch. 16 - Prob. 1DQCh. 16 - Prob. 2DQCh. 16 - Prob. 3DQCh. 16 - Prob. 4DQCh. 16 - Prob. 5DQCh. 16 - Prob. 6DQCh. 16 - Prob. 7DQCh. 16 - Prob. 8DQCh. 16 - Prob. 9DQCh. 16 - Prob. 10DQ
Ch. 16 - Prob. 11ECh. 16 - List the major types of intermolecular forces in...Ch. 16 - Prob. 13ECh. 16 - Prob. 14ECh. 16 - Prob. 15ECh. 16 - Prob. 16ECh. 16 - Prob. 17ECh. 16 - Prob. 18ECh. 16 - Rationalize the difference in boiling points for...Ch. 16 - Prob. 20ECh. 16 - Prob. 21ECh. 16 - Prob. 22ECh. 16 - Consider the following electrostatic potential...Ch. 16 - Prob. 24ECh. 16 - Prob. 25ECh. 16 - Prob. 26ECh. 16 - Prob. 27ECh. 16 - Prob. 28ECh. 16 - Prob. 29ECh. 16 - Prob. 30ECh. 16 - Prob. 31ECh. 16 - Prob. 32ECh. 16 - Prob. 33ECh. 16 - Prob. 34ECh. 16 - Prob. 35ECh. 16 - Prob. 36ECh. 16 - Prob. 37ECh. 16 - Prob. 38ECh. 16 - Prob. 39ECh. 16 - Prob. 40ECh. 16 - Prob. 41ECh. 16 - Prob. 42ECh. 16 - Prob. 43ECh. 16 - Prob. 44ECh. 16 - Prob. 45ECh. 16 - Prob. 46ECh. 16 - Nickel has a face-centered cubic unit cell. The...Ch. 16 - Prob. 48ECh. 16 - Prob. 49ECh. 16 - Prob. 50ECh. 16 - Prob. 51ECh. 16 - The radius of tungsten is 137 pm and the density...Ch. 16 - Prob. 53ECh. 16 - Prob. 54ECh. 16 - Prob. 55ECh. 16 - Prob. 56ECh. 16 - Prob. 57ECh. 16 - Prob. 58ECh. 16 - Prob. 59ECh. 16 - Prob. 60ECh. 16 - Prob. 61ECh. 16 - Prob. 62ECh. 16 - Describe, in general, the structures of ionic...Ch. 16 - Prob. 64ECh. 16 - Prob. 65ECh. 16 - Prob. 66ECh. 16 - Prob. 67ECh. 16 - Prob. 68ECh. 16 - Prob. 69ECh. 16 - Prob. 70ECh. 16 - Prob. 71ECh. 16 - Prob. 72ECh. 16 - Prob. 73ECh. 16 - Prob. 74ECh. 16 - Prob. 75ECh. 16 - Prob. 76ECh. 16 - Prob. 77ECh. 16 - Perovskite is a mineral containing calcium,...Ch. 16 - Prob. 79ECh. 16 - Prob. 80ECh. 16 - Prob. 81ECh. 16 - Prob. 82ECh. 16 - How does each of the following affect the rate of...Ch. 16 - Prob. 84ECh. 16 - Prob. 85ECh. 16 - Prob. 86ECh. 16 - Prob. 87ECh. 16 - Diethyl ether (CH3CH2OCH2CH3) was one of the...Ch. 16 - Prob. 89ECh. 16 - Prob. 90ECh. 16 - A substance has the following properties: Sketch a...Ch. 16 - Prob. 92ECh. 16 - Prob. 93ECh. 16 - Prob. 94ECh. 16 - Prob. 95ECh. 16 - Prob. 96ECh. 16 - Prob. 97ECh. 16 - Prob. 98ECh. 16 - Compare and contrast the phase diagrams of water...Ch. 16 - Prob. 100ECh. 16 - Prob. 101ECh. 16 - Prob. 102ECh. 16 - Prob. 103ECh. 16 - Prob. 104ECh. 16 - Prob. 105ECh. 16 - Prob. 106ECh. 16 - The melting point of a fictional substance X is...Ch. 16 - Prob. 108ECh. 16 - Prob. 109ECh. 16 - Prob. 110AECh. 16 - Prob. 111AECh. 16 - Prob. 112AECh. 16 - Prob. 113AECh. 16 - Prob. 114AECh. 16 - Prob. 115AECh. 16 - Prob. 116AECh. 16 - Prob. 117AECh. 16 - Prob. 118AECh. 16 - Prob. 119AECh. 16 - Prob. 120AECh. 16 - Prob. 121AECh. 16 - Spinel is a mineral that contains 37.9%...Ch. 16 - Prob. 123AECh. 16 - Prob. 124AECh. 16 - Prob. 125AECh. 16 - Prob. 126AECh. 16 - Prob. 127AECh. 16 - Prob. 128AECh. 16 - Prob. 129AECh. 16 - Prob. 130AECh. 16 - Prob. 131AECh. 16 - Prob. 132AECh. 16 - Prob. 133AECh. 16 - Prob. 134AECh. 16 - Prob. 135AECh. 16 - Prob. 136AECh. 16 - Which of the following statements is(are) true? a....Ch. 16 - Prob. 138AECh. 16 - Prob. 139AECh. 16 - Prob. 140AECh. 16 - Prob. 141AECh. 16 - Prob. 142AECh. 16 - Prob. 143AECh. 16 - Prob. 144CPCh. 16 - Prob. 145CPCh. 16 - Prob. 146CPCh. 16 - Prob. 147CPCh. 16 - Prob. 148CPCh. 16 - Prob. 149CPCh. 16 - Prob. 150CPCh. 16 - Prob. 151CPCh. 16 - Prob. 152CPCh. 16 - Prob. 153CPCh. 16 - Prob. 154MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- A common prank on college campuses is to switch the salt and sugar on dining hall tables, which is usually easy because the substances look so much alike. Yet, despite the similarity in their appearance, these two substances differ greatly in their properties, since one is a molecular solid and the other is an ionic solid. How do the properties differ and why?arrow_forwardIn the LiCl structure shown in Figure 9.21, the chloride ions form a face-centered cubic unit cell 0.513 nm on an edge. The ionic radius of Cl- is 0.181 nm. (a) Along a cell edge, how much space is between the Cl- ions? (b) Would an Na+ ion (r=0.095nm) fit into this space? a K+ ion (r=0.133nm)?arrow_forwardExplain why the molar enthalpies of vaporization of the following substances increase in the order CH4C2H6C3H8, even though the type of IMF (dispersion) is the same.arrow_forward
- Iron crystallizes in a body-centered unit cell. Its atomic radius is 0.124 nm. Its density is 7.86 g/cm3. Using this information, estimate Avogadro's number.arrow_forwardA portion of the crystalline lattice for potassium is illustrated below. (a) In what type of unit cell are the K atoms arranged? A portion of the solid-state structure of potassium. (b) If one edge of the potassium unit cell is 533 pm, what is the density of potassium?arrow_forwardSilicon carbide, SiC, is a very hard, high-melting solid. What kind of crystal forces account for these properties?arrow_forward
- The CsCl structure is a simple cubic array of chloride ions with a cesium ion at the center of each cubic array (see Exercise 69). Given that the density of cesium chloride is 3.97 g/cm3, and assuming that the chloride and cesium ions touch along the body diagonal of the cubic unit cell, calculate the distance between the centers of adjacent Cs+ and Cl ions in the solid. Compare this value with the expected distance based on the sizes of the ions. The ionic radius of Cs+ is 169 pm, and the ionic radius of Cl is 181 pm.arrow_forwardExplain in words how Avogadros number could be obtained from the unit-cell edge length of a cubic crystal. What other data are required?arrow_forwardDescribe, in general, the structures of ionic solids. Compare and contrast the structure of sodium chloride and zinc sulfide. How many tetrahedral holes and octahedral holes are there per closest packed anion? In zinc sulfide, why are only one-half of the tetrahedral holes filled with cations?arrow_forward
- What is the percent by mass of titanium in rutile, a mineral that contains titanium and oxygen, if structure can be described as a closest packed array of oxide ions with titanium ions in one-half of the octahedral holes? What is the oxidation number of titanium?arrow_forwardThe free space in a metal may be found by subtracting the volume of the atoms in a unit cell from the volume of the cell. Calculate the percentage of free space in each of the three cubic lattices if all atoms in each are of equal size and touch their nearest neighbors. Which of these structures represents the most efficient packing? That is, which packs with the least amount of unused space?arrow_forwardIf you've ever opened a bottle of rubbing alcohol or other solvent on a warm day, you may have heard a little “whoosh” as the vapor that had built up above the liquid escapes. Describe on a microscopic basis how a vapor pressure builds up in a closed container above a liquid. What processes in the container give rise to this phenomenon?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemical Principles in the LaboratoryChemistryISBN:9781305264434Author:Emil Slowinski, Wayne C. Wolsey, Robert RossiPublisher:Brooks ColeChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
Chemical Principles in the Laboratory
Chemistry
ISBN:9781305264434
Author:Emil Slowinski, Wayne C. Wolsey, Robert Rossi
Publisher:Brooks Cole
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax