EBK CHEMICAL PRINCIPLES
8th Edition
ISBN: 9781305856745
Author: DECOSTE
Publisher: CENGAGE LEARNING - CONSIGNMENT
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 72E
Interpretation Introduction
Interpretation:
The fraction of iron present as Fe3+ in Wusiteneeds to be determined.
The fraction of the vacant Fe2+ sites in the compound needs to be determined.
Concept Introduction :
A molecular formula is used to represent the number of each atom present in the molecule. The atoms combine to form molecule in such a way that all the atoms gets the noble gas stable electronic configuration.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A compound of titanium and oxygen contains 28.31% oxygen by mass.(a) If the compound’s empirical formula is TixO, calculate x to four significant figures.(b) The nonstoichiometric compounds TixO can be described as having a Ti2+-O2- lattice in which certain Ti2+ ions are missing or are replaced by Ti3+ ions. Calculate the fraction of Ti2+ sites in the nonstoichiometric compound that are vacant and the fraction that are occupied by Ti3+ ions.
A metal X has an atomic radius of 0.126 nm. If the density and molar
mass of X are 7.87 g cm3 and 55.85 g mol1, respectively.
1.
(a)
(i)
Determine the number of atoms per unit cell and the crystal
structure of metal X.
(ii)
Determine the volume of the unit cell.
(ii)
Determine its planar density in [100], [110] and [111] directions.
(iv)
Explain which direction would be the most possible slip direction
when shear stress is applied.
(b)
Explain the role of matrix and reinforcement phase in a composite
material.
A cubic unit cell contains manganese ions at the corners and fluoride ions at the center of each edge.(a) What is the empirical formula of this compound? Explain your answer.(b) What is the coordination number of the Mn3+ ion?(c) Calculate the edge length of the unit cell if the radius of a Mn3+ ion is 0.65 A.(d) Calculate the density of the compound.
Chapter 16 Solutions
EBK CHEMICAL PRINCIPLES
Ch. 16 - Prob. 1DQCh. 16 - Prob. 2DQCh. 16 - Prob. 3DQCh. 16 - Prob. 4DQCh. 16 - Prob. 5DQCh. 16 - Prob. 6DQCh. 16 - Prob. 7DQCh. 16 - Prob. 8DQCh. 16 - Prob. 9DQCh. 16 - Prob. 10DQ
Ch. 16 - Prob. 11ECh. 16 - List the major types of intermolecular forces in...Ch. 16 - Prob. 13ECh. 16 - Prob. 14ECh. 16 - Prob. 15ECh. 16 - Prob. 16ECh. 16 - Prob. 17ECh. 16 - Prob. 18ECh. 16 - Rationalize the difference in boiling points for...Ch. 16 - Prob. 20ECh. 16 - Prob. 21ECh. 16 - Prob. 22ECh. 16 - Consider the following electrostatic potential...Ch. 16 - Prob. 24ECh. 16 - Prob. 25ECh. 16 - Prob. 26ECh. 16 - Prob. 27ECh. 16 - Prob. 28ECh. 16 - Prob. 29ECh. 16 - Prob. 30ECh. 16 - Prob. 31ECh. 16 - Prob. 32ECh. 16 - Prob. 33ECh. 16 - Prob. 34ECh. 16 - Prob. 35ECh. 16 - Prob. 36ECh. 16 - Prob. 37ECh. 16 - Prob. 38ECh. 16 - Prob. 39ECh. 16 - Prob. 40ECh. 16 - Prob. 41ECh. 16 - Prob. 42ECh. 16 - Prob. 43ECh. 16 - Prob. 44ECh. 16 - Prob. 45ECh. 16 - Prob. 46ECh. 16 - Nickel has a face-centered cubic unit cell. The...Ch. 16 - Prob. 48ECh. 16 - Prob. 49ECh. 16 - Prob. 50ECh. 16 - Prob. 51ECh. 16 - The radius of tungsten is 137 pm and the density...Ch. 16 - Prob. 53ECh. 16 - Prob. 54ECh. 16 - Prob. 55ECh. 16 - Prob. 56ECh. 16 - Prob. 57ECh. 16 - Prob. 58ECh. 16 - Prob. 59ECh. 16 - Prob. 60ECh. 16 - Prob. 61ECh. 16 - Prob. 62ECh. 16 - Describe, in general, the structures of ionic...Ch. 16 - Prob. 64ECh. 16 - Prob. 65ECh. 16 - Prob. 66ECh. 16 - Prob. 67ECh. 16 - Prob. 68ECh. 16 - Prob. 69ECh. 16 - Prob. 70ECh. 16 - Prob. 71ECh. 16 - Prob. 72ECh. 16 - Prob. 73ECh. 16 - Prob. 74ECh. 16 - Prob. 75ECh. 16 - Prob. 76ECh. 16 - Prob. 77ECh. 16 - Perovskite is a mineral containing calcium,...Ch. 16 - Prob. 79ECh. 16 - Prob. 80ECh. 16 - Prob. 81ECh. 16 - Prob. 82ECh. 16 - How does each of the following affect the rate of...Ch. 16 - Prob. 84ECh. 16 - Prob. 85ECh. 16 - Prob. 86ECh. 16 - Prob. 87ECh. 16 - Diethyl ether (CH3CH2OCH2CH3) was one of the...Ch. 16 - Prob. 89ECh. 16 - Prob. 90ECh. 16 - A substance has the following properties: Sketch a...Ch. 16 - Prob. 92ECh. 16 - Prob. 93ECh. 16 - Prob. 94ECh. 16 - Prob. 95ECh. 16 - Prob. 96ECh. 16 - Prob. 97ECh. 16 - Prob. 98ECh. 16 - Compare and contrast the phase diagrams of water...Ch. 16 - Prob. 100ECh. 16 - Prob. 101ECh. 16 - Prob. 102ECh. 16 - Prob. 103ECh. 16 - Prob. 104ECh. 16 - Prob. 105ECh. 16 - Prob. 106ECh. 16 - The melting point of a fictional substance X is...Ch. 16 - Prob. 108ECh. 16 - Prob. 109ECh. 16 - Prob. 110AECh. 16 - Prob. 111AECh. 16 - Prob. 112AECh. 16 - Prob. 113AECh. 16 - Prob. 114AECh. 16 - Prob. 115AECh. 16 - Prob. 116AECh. 16 - Prob. 117AECh. 16 - Prob. 118AECh. 16 - Prob. 119AECh. 16 - Prob. 120AECh. 16 - Prob. 121AECh. 16 - Spinel is a mineral that contains 37.9%...Ch. 16 - Prob. 123AECh. 16 - Prob. 124AECh. 16 - Prob. 125AECh. 16 - Prob. 126AECh. 16 - Prob. 127AECh. 16 - Prob. 128AECh. 16 - Prob. 129AECh. 16 - Prob. 130AECh. 16 - Prob. 131AECh. 16 - Prob. 132AECh. 16 - Prob. 133AECh. 16 - Prob. 134AECh. 16 - Prob. 135AECh. 16 - Prob. 136AECh. 16 - Which of the following statements is(are) true? a....Ch. 16 - Prob. 138AECh. 16 - Prob. 139AECh. 16 - Prob. 140AECh. 16 - Prob. 141AECh. 16 - Prob. 142AECh. 16 - Prob. 143AECh. 16 - Prob. 144CPCh. 16 - Prob. 145CPCh. 16 - Prob. 146CPCh. 16 - Prob. 147CPCh. 16 - Prob. 148CPCh. 16 - Prob. 149CPCh. 16 - Prob. 150CPCh. 16 - Prob. 151CPCh. 16 - Prob. 152CPCh. 16 - Prob. 153CPCh. 16 - Prob. 154MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- What is the coordination number of Cs in CsCl? of Na in NaCl? of Zn2 in ZnS?arrow_forwardRutile, TiO2, crystallizes in a structure characteristic of many other ionic compounds How many formula units of TiO2 are in the unit cell illustrated here? (The oxide ions marked by an x are wholly within the cell; the others are in the cell faces.) Unit cell for rufflearrow_forwardSome ionic compounds contain a mixture of different charged cations. For example, wstite is an oxide that contains both Fe2+ and Fe3+ cations and has a formula of Fe0.950O1.00.Calculate the fraction of iron ions present as Fe3+. What fraction of the sites normally occupied by Fe2+ must be vacant in this solid?arrow_forward
- Palladium has a cubic crystal structure in which the edge of the unit cell is 389 pm long. If the density of palladium is 12.02 g/cm3, how many palladium atoms are in a unit cell? In which of the cubic unit cells does palladium crystallize?arrow_forwardAssociate each of the solids BN, P4S3, Pb, and CaCl2 with one of the following sets of properties. a A bluish white, lustrous solid melting at 327C; the solid is soft and malleable. b A white solid melting at 772C; the solid is an electrical nonconductor but dissolves in water to give a conducting solution. c A yellowish green solid melting at 172C. d A very hard, colorless substance melting at about 3000C.arrow_forwardNanotechnology, or technology utilizing 1100 nm sized particles, has rapidly expanded in the past few decades, with potential applications ranging across far-reaching fields such as electronics, medicine, biomaterials, and consumer products, to name a few. One of the primary advantages of nanoparticles is the presence of large surface/mass ratios, resulting in enhanced surface activities compared to bulk materials. a Use the density of silver (10.49 g/cm3) to determine the number of Ag atoms in a spherical 20.-nm silver particle. b In the crystalline metallic environment, the measured radii of silver atoms has been measured to be 144 pm. Use this to calculate the atomic packing fraction of a 20.-nm silver particle. In other words, calculate the ratio of the volume taken up by Ag atoms to the volume of the entire nanoparticle. c Based on the result of part (b), silver conforms to which type of cubic crystal lattice? A simple cubic B body-centered cubic C face-centered cubic d A cubic Ag ingot having a mass of 5.0-g is processed to form a batch of 20.-nm Ag nanoparticles. Calculate the ratio of the surface area provided by the batch of nanoparticles to the surface area of the initial cube of Ag.arrow_forward
- (b) Using the Crystallographer's formula to determine the density (in g/cm³) of Po: ρ = Σ Ζ * Μ Vell* N You must know that a primitive cubic cell has Z = 1 Since Po is a metal, the value of "i" = 1, since it's the only entity! MM of Po= 208.998 g/mol Vcell (in cm³) = a³ Vcell (3.36 x 10-8 cm)³ = 3.793 x 10-23 cm³ N = 6.022 x 1023 atoms/mol Thus: p = (1 atom/cell) (208.998 g/mol) = 9.16 g/cm³ (3.793 x 10-23 cm³) (6.022 x 1023)arrow_forwardCrystal structure represents the manner in which atoms or ions are arrayed in space. It is defined in terms of the unit celI (1) and the atom (2) within the unit cell. (1) = direction, (2) = sizes. (1) = plane, (2) = positions. (1) = geometry, (2) = positions. (1) = geometry, (2) = sizes.arrow_forwardA hypothetical metal has a tetragonal unit cell for which the lattice parameters (in nm) are a=b=0.550, c=0.673 and all angles are 90 degrees. If there are 5 atoms per unit cell and the atomic packing factor is 0.63, determine the atomic radius in nm. Use 3.14 for pi. Give your answer to 3 decimal places. I got 0.197 the first time and it was incorrect.arrow_forward
- In the early days of X-ray crystallography there was an urgent need to know the wavelengths of X-rays. One technique was to measure the diffraction angle from a mechanically ruled grating. Another method was to estimate the separation of lattice planes from the measured density of a crystal. The mass density of NaCl is 2.17 g cm−3 and the (100) reflection using radiation of a certain wavelength occurred at 6.0°. Calculate the wavelength of the X-rays.arrow_forwardFe has both bcc and fcc structures with difference lattice constants: the bcc lattice constant a = 2.8664 Angstrom; and the fcc lattice constant = 3.6468 Angstrom. If we treat Fe atoms as touching hard spheres, (1) Derive associated atomic radius of Fe atoms in the bcc structure (2) Derive associated atomic radius of Fe atoms in the fcc structure (3) Calculate the volume fraction of Fe atoms in the bcc structure (4) Calculate the volume fraction of Fe atoms in the fcc structure (5) Calculate the edge lengths of octahedral and tetrahedral interstitials in bcc Fe (6) Calculate the edge lengths of octahedral and tetrahedral interstitials in fcc Fe (7) The fcc Fe has a denser packed structure yet solubility of carbon (atomic radius 0.7 Angstrom, only can occupy the interstitial sites of Fe) is much higher than that in the bcc Fe. Why is it so?arrow_forward1: (a) Find relationship of lattice parameter to atomic radius in a simple cube SC, body centered cube BCC and face centered cube FCC. (a) Skitch the following direction within a cubic unit cell [101], [112] and [111].arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Unit Cell Chemistry Simple Cubic, Body Centered Cubic, Face Centered Cubic Crystal Lattice Structu; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=HCWwRh5CXYU;License: Standard YouTube License, CC-BY