Vector Mechanics for Engineers: Dynamics
11th Edition
ISBN: 9780077687342
Author: Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15.5, Problem 15.177P
To determine
Angular velocity and angular acceleration of disk S when
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem (3)
radius r = 70 mm and is attached to block B as
shown. If the angular velocity of gear D is 20 rpm
A straight rack rests on a gear of
A
counterclockwise when 0 = 20°, determine:
(a) The velocity of block B
(b) The angular velocity of rack AB
Solve the problem one time using the relative velocity equation and another time using the
Instantaneous Center (IC) method. You should get the same answers.
When the mechanism in the figure is in the position shown. the velocity of the center O of the disk is 16 in/s to the right. Assuming the disk rolls without slipping cacluate the velocity of the collar B in this position using either the relative velocity approach or the instantaneous center of zero velocity approach.
Q1: The crank of a slider crank mechanism rotates clockwise at a constant speed
of 300 r.p.m. The crank is 150 mm and the connecting rod is 600 mm long.
Determine the angular velocity and angular acceleration of the connecting rod, at
a crank angle of 45° from inner dead center position.
A
immin
B
150 mm
45°
I.D.C.
Q2: The turning moment diagram of a four-stroke engine assumed to be
represented by four triangles in each stroke. The areas of these triangles are as
follows: Suction stroke = 700 N.m; Compression stroke = 2940 N.m; Expansion
stroke = 11900 N.m; Exhaust stroke = 1120 N.m. All the areas excepting
Expansion stroke are negative. Determine the moment of inertia of the flywheel
to keep the speed between 98 r.p.m. and 102 r.p.m. Also find the size of a rim-
type flywheel, given that density of flywheel material is 8150 kg/m³; the
allowable tensile stress of the flywheel material is 7.5 MPa. The rim cross-section
is rectangular; one side being four times the length of the other.…
Chapter 15 Solutions
Vector Mechanics for Engineers: Dynamics
Ch. 15.1 - A rectangular plate swings from arms of equal...Ch. 15.1 - Knowing that wheel A rotates with a constant...Ch. 15.1 - The brake drum is attached to a lager flywheel...Ch. 15.1 - The motion of an oscillation flvdee1 is defined by...Ch. 15.1 - The motion of an oscillation flywheel is defined...Ch. 15.1 - The rotor of a gas turbine is rotating at a speed...Ch. 15.1 - A small grinding wheel is attached to the shaft of...Ch. 15.1 - A connecting rod is supported by a knife-edge at...Ch. 15.1 - When studying whiplash resulting from rear-end...Ch. 15.1 - The angular acceleration of an oscillating disk is...
Ch. 15.1 - The angular acceleration of a shaft is defined by...Ch. 15.1 - The bent rod ABCD rotates about a line joining...Ch. 15.1 - In Prob. 15.10, determine the velocity and...Ch. 15.1 - The rectangular block shown rotates about the...Ch. 15.1 - The rectangular block shown rotates about the...Ch. 15.1 - A circular plate of 120-mm radius is supported by...Ch. 15.1 - In Prob. 15.14, determine the velocity and...Ch. 15.1 - The earth makes one complete revolution around the...Ch. 15.1 - The earth makes one complete revolution on its...Ch. 15.1 - A series of small machine components being moved...Ch. 15.1 - A series of small machine components being moved...Ch. 15.1 - The belt sander shown is initially at rest. If the...Ch. 15.1 - The rated speed of drum B of the belt sander shown...Ch. 15.1 - The two pulleys shown may be operated with the V...Ch. 15.1 - Three belts move over tow pulleys without slipping...Ch. 15.1 - gear reduction system consists of three gears A,...Ch. 15.1 - A belt is pulled to the right between cylinders A...Ch. 15.1 - Ring C has an inside radius of 55 mm and an...Ch. 15.1 - Ring B has an inside radius r2and hangs from the...Ch. 15.1 - A plastic film moves over two drums. During a 4-s...Ch. 15.1 - Cylinder A is moving downward with a velocity of 3...Ch. 15.1 - The system shown is held at rest by the...Ch. 15.1 - A load is to be raised 20 ft by the hoisting...Ch. 15.1 - A simple friction drive consists of two disks A...Ch. 15.1 - Two friction wheels A and B are both rotating...Ch. 15.1 - Two friction disks A and B are to be brought into...Ch. 15.1 - Two friction disks A and B are brought into...Ch. 15.1 - Steel tape is being wound onto a spool that...Ch. 15.1 - Prob. 15.37PCh. 15.2 - The ball rolls without slipping on the fixed...Ch. 15.2 - Three uniform rods—ABC, DCE, and FGH—are connected...Ch. 15.2 - An automobile travel, to the right at a constant...Ch. 15.2 - The motion of rod AB is guided by pins attached at...Ch. 15.2 - A painter is halfway up a 10-m ladder when the...Ch. 15.2 - Rod AB can slide freely along the floor and the...Ch. 15.2 - Rod AB can slide freely along the floor and the...Ch. 15.2 - Rod AB moves over a small wheel at C while end A...Ch. 15.2 - The disk shown moves in the xy plane. Knowing that...Ch. 15.2 - The disk shown moves in the xy p1ane. Knowing that...Ch. 15.2 - The plate shown moves in the xy plane. Knowing...Ch. 15.2 - Velocity sensors are placed on a satellite that is...Ch. 15.2 - In the planetary gear system shown, the radius of...Ch. 15.2 - In the planetary gear system shown, the radius of...Ch. 15.2 - Arm AB rotates with an angular velocity of 20...Ch. 15.2 - In the simplified sketch of a ball bearing shown,...Ch. 15.2 - A simplified gear system for a mechanical watch is...Ch. 15.2 - Arm ACB rotates about point C with an angular...Ch. 15.2 - Arm ACB rotates about point C with an angular...Ch. 15.2 - Knowing that at the instant shown the velocity of...Ch. 15.2 - Knowing that at the instant shown the angular...Ch. 15.2 - Knowing that the disk has a constant angular...Ch. 15.2 - The disk has a constant angular velocity of 20...Ch. 15.2 - The test rig is shown was developed to perform...Ch. 15.2 - In the concentric shown, a disk of 2-in. radius...Ch. 15.2 - In the engine system shown, l=160mmandb=60mm ....Ch. 15.2 - In the engine system shown, l=160 mm and b=60 mm....Ch. 15.2 - Knowing that at the instant shown the angular...Ch. 15.2 - In the position shown, bar AB has angular velocity...Ch. 15.2 - Linkage DBEF is part of a windshield wiper...Ch. 15.2 - Roberts linkage is named after Richard Roberts...Ch. 15.2 - Roberts linkage is named after Richard Roberts...Ch. 15.2 - In the position shown, bar DE has a constant...Ch. 15.2 - In the position shown, bar DE has a constant...Ch. 15.2 - Both 6-in.-radius wheels roll without slipping on...Ch. 15.2 - The 80-mm-radius wheel shown rolls to the left...Ch. 15.2 - For the gearing shown, derive an expression for...Ch. 15.3 - The disk rolls without sliding on the fixed...Ch. 15.3 - Bar BDE is pinned to two links, AB and CD. At the...Ch. 15.3 - A juggling club is thrown vertically into the air....Ch. 15.3 - At the instant shown during deceleration, the...Ch. 15.3 - A helicopter moves horizontally in the x direction...Ch. 15.3 - A 60-mm-radius drum is rigidly attached to a...Ch. 15.3 - Prob. 15.77PCh. 15.3 - The spool of tape shown and its frame assembly are...Ch. 15.3 - The spool of tape shown and its frame are pulled...Ch. 15.3 - The arm ABC rotates with an angular velocity of 4...Ch. 15.3 - The double gear rolls on the stationary left rack...Ch. 15.3 - An overhead door is guided by wheels at A and B...Ch. 15.3 - Rod ABD is guided by wheels at A and B that roll...Ch. 15.3 - Rod BDE is partially guided by a roller at D that...Ch. 15.3 - Rod BDE is partially guided by a roller at D that...Ch. 15.3 - A motor at O drives the windshield wiper mechanism...Ch. 15.3 - A motor at O drives the windshield wiper mechanism...Ch. 15.3 - Rod AB can slide freely along the floor and the...Ch. 15.3 - Small wheels have been attached to the ends of bar...Ch. 15.3 - Two slots have been cut in plate FG and the plate...Ch. 15.3 - The disk is released from rest and rolls down the...Ch. 15.3 - The pin at B is attached to member ABD and can...Ch. 15.3 - Two identical rods ABF and DBE are Connected by a...Ch. 15.3 - Ann ABD is connected by pins to a collar at B and...Ch. 15.3 - Two 25-in. rods are pin-connected at D as shown....Ch. 15.3 - Two rods ABD and DE are connected to three collars...Ch. 15.3 - At the instant shown, the velocity of collar A is...Ch. 15.3 - Two rods AB and DE are connected as shown. Knowing...Ch. 15.3 - Describe the space centrode and the body centrode...Ch. 15.3 - Describe the space centrode and the body centrode...Ch. 15.3 - Using the method of Sec. 15.3, solve Prob. 15.60.Ch. 15.3 - Using the method of Sec. 15.3, solve Prob. 15.64.Ch. 15.3 - Using the method of Sec. 15.3, solve Prob. 15.65.Ch. 15.3 - Using the method of Sec. 15.3, solve Prob. 15.38.Ch. 15.4 - A rear-wheel-drive car starts from rest and...Ch. 15.4 - A 5-m steel beam is lowered by means of two cables...Ch. 15.4 - For a 5-m steel beam AE, the acceleration of point...Ch. 15.4 - A 900-mm rod rests on a horizontal table A force P...Ch. 15.4 - In Prob. 15.107, determine the point of the rod...Ch. 15.4 - Knowing that at the instant shown crank BC has a...Ch. 15.4 - End A of rod AB moves to the right with a constant...Ch. 15.4 - An automobile travels to the left at a constant...Ch. 15.4 - The 18-in.-radius flywheel is rigidly attached to...Ch. 15.4 - A 3-in.-radius drum is rigidly attached to a...Ch. 15.4 - A 3-in.-radius drum is rigidly attached to a...Ch. 15.4 - A heavy crate is being moved a sbo1 distance using...Ch. 15.4 - A wheel rolls without slipping on a fixed...Ch. 15.4 - The 100-nun-radius drum rolls without slipping on...Ch. 15.4 - In the planetary gear system shown, the radius of...Ch. 15.4 - The 200-mm-radius disk rolls without sliding on...Ch. 15.4 - Knowing that crank AB rotates about point A with a...Ch. 15.4 - Knowing that crank AB rotates about point A with a...Ch. 15.4 - In the two-cylinder air compressor shown, the...Ch. 15.4 - The disk shown has a constant angular velocity of...Ch. 15.4 - Arm AB has a constant angular velocity of 16 rad/s...Ch. 15.4 - Arm AB has a constant angular velocity of 16 rad/s...Ch. 15.4 - A straight rack rests on a gear of radius r=3 in....Ch. 15.4 - The elliptical exercise machine has fixed axes of...Ch. 15.4 - The elliptical exercise machine has fixed axes of...Ch. 15.4 - Knowing that at the instant shown bar AB has a...Ch. 15.4 - Knowing that at the instant shown bar DE has a...Ch. 15.4 - Knowing that at the instant shown bar AB has a...Ch. 15.4 - Knowing that at the instant shown bar AB has a...Ch. 15.4 - Knowing that at the instant shown bar AB has...Ch. 15.4 - Knowing that at the instant shown bar AB has...Ch. 15.4 - Roberts linkage is named after Richard Roberts...Ch. 15.4 - For the oil pump rig shown, link AB causes the...Ch. 15.4 - Denoting by rA the position vector of a point A of...Ch. 15.4 - The drive disk of the Scotch crosshead mechanism...Ch. 15.4 - The wheels attached to the ends of rod AB roll...Ch. 15.4 - The wheels attached to the ends of rod AB roll...Ch. 15.4 - A disk of radius r rolls to the right with a...Ch. 15.4 - Rod AB moves over a small wheel at C while end A...Ch. 15.4 - Rod AB moves over a small wheel at C while end A...Ch. 15.4 - Crank4B rotates with a constant c1ockise angular...Ch. 15.4 - Crank 4B rotates with a constant clockwise angular...Ch. 15.4 - Solve the engine system from Sample Prob. 15.15...Ch. 15.4 - The position of rod AB is controlled by a disk of...Ch. 15.4 - A wheel of radius r rolls without slipping along...Ch. 15.4 - In Prob. 15. 148, show that the path of P is a...Ch. 15.5 - A person walks radially inward on a platform that...Ch. 15.5 - Pin P is attached to the collar shown; the motion...Ch. 15.5 - Pin P is attached to the collar shown; the motion...Ch. 15.5 - Two rotating rods are connected by slider block P....Ch. 15.5 - Two rotating rods are connected by slider block P....Ch. 15.5 - Pin P is attached to the wheel shown and slides in...Ch. 15.5 - Knowing that at the instant shown the angular...Ch. 15.5 - Knowing that at the instant shown the anu1ar...Ch. 15.5 - The motion of pin P is guided by slots cut in...Ch. 15.5 - Four pins slide in four separate slots cut in a...Ch. 15.5 - Solve Prob. 15.158, assuming that the plate...Ch. 15.5 - The cage of a mine elevator moves downward at a...Ch. 15.5 - Prob. 15.161PCh. 15.5 - A rocket sled is tested o a straight track that is...Ch. 15.5 - Prob. 15.163PCh. 15.5 - Prob. 15.164PCh. 15.5 - At the instant shown the length of the boom AB is...Ch. 15.5 - In the automated welding setup shown, the position...Ch. 15.5 - In the automated welding setup shown, the position...Ch. 15.5 - A chain is looped around two gears of radius 40 mm...Ch. 15.5 - A chain is looped around two gears of radius 40 mm...Ch. 15.5 - Prob. 15.170PCh. 15.5 - The human leg can be crudely approximated as two...Ch. 15.5 - The collar P slides outward at a constant relative...Ch. 15.5 - Pin P slides in a circular slot cut in the plate...Ch. 15.5 - Rod AD is bent in the shape of an are of a circle...Ch. 15.5 - Solve Prob. 15.l74 when =90 .Ch. 15.5 - Prob. 15.176PCh. 15.5 - Prob. 15.177PCh. 15.5 - In Prob. 15.177, determine the angular velocity...Ch. 15.5 - Prob. 15.179PCh. 15.5 - Prob. 15.180PCh. 15.5 - Rod AB passes through a collar that is welded to...Ch. 15.5 - Solve Prob. 15.181 assuming block A moves to the...Ch. 15.5 - In Prob. 15.157, determine the acceleration of pin...Ch. 15.6 - The bowling ball shown rolls without slipping on...Ch. 15.6 - The bowling ball shown rolls without slipping on...Ch. 15.6 - Plate ABD and rod OB are rigidly connected and...Ch. 15.6 - At the instant considered, the radar antenna shown...Ch. 15.6 - Prob. 15.188PCh. 15.6 - The disk of a portable sander rotates at the...Ch. 15.6 - Prob. 15.190PCh. 15.6 - Prob. 15.191PCh. 15.6 - In the system shown, disk A is free to rotate...Ch. 15.6 - Prob. 15.193PCh. 15.6 - A gun barrel of length OP=4m is mounted on a...Ch. 15.6 - Prob. 15.195PCh. 15.6 - A 3-in-radius disk spins at the constant rate 2=4...Ch. 15.6 - The cone shown rolls on the zx plane with its apex...Ch. 15.6 - At the instant shown, the robotic arm ABC is being...Ch. 15.6 - In the planetary gear system shown, gears A and B...Ch. 15.6 - In Prob. 15.199, determine (a) the common angular...Ch. 15.6 - Several rods are brazed together to form the...Ch. 15.6 - In Prob. 15.201, the speed of point B is known to...Ch. 15.6 - Rod AB of length 25 in. is connected by ball...Ch. 15.6 - Rod AB has a length of 13 in. and is connected by...Ch. 15.6 - Rod BC and BD are each 840 mm long and are...Ch. 15.6 - Rod AB is connected by ball-and-socket joints to...Ch. 15.6 - Rod AB of length 29 in. is connected by...Ch. 15.6 - Rod AB of length 300 mm is connected by ball...Ch. 15.6 - Rod AB of length 300 mm is connected by...Ch. 15.6 - Two shafts AC and EG, which lie in the vertical yz...Ch. 15.6 - Solve Prob. 15.210, assuming that the arm of the...Ch. 15.6 - Rod BC has a length of 42 in. and is connected by...Ch. 15.6 - Rod AB has a length of 275 mm and is connected by...Ch. 15.6 - For the mechanism of Prob.15.204, determine the...Ch. 15.6 - In Prob. 15.205, determine the acceleration of...Ch. 15.6 - In Prob. 15.206, determine the acceleration of...Ch. 15.6 - In Prob. 15.207, determine the acceleration of...Ch. 15.6 - In Prob. 15.208, determine the acceleration of...Ch. 15.6 - In Prob. 15.209, determine the acceleration of...Ch. 15.7 - A flight simulator is used to train pilots on how...Ch. 15.7 - A flight simulator is used to train pilots on how...Ch. 15.7 - The rectangular plate shown rotates at the...Ch. 15.7 - The rectangular plate shown rotates at the...Ch. 15.7 - Rod AB is welded to the 0.3-m-radius plate that...Ch. 15.7 - The bent rod shown rotates at the constant rate of...Ch. 15.7 - The bent pipe shown rotates at the constant rate...Ch. 15.7 - The circular plate shown rotates about its...Ch. 15.7 - Manufactured items are spray-painted as they pass...Ch. 15.7 - Solve Prob. 15.227, assuming that at the instant...Ch. 15.7 - Solve Prob. 15.225, assuming that at the instant...Ch. 15.7 - Using the method of Sec. 15.7A, solve Prob....Ch. 15.7 - Using the method of Sec. 15.7A, solve Prob....Ch. 15.7 - Using the method of Sec. 15.7A, solve Prob....Ch. 15.7 - The 400-mm bar AB is made to rotate at the...Ch. 15.7 - The 400-mm bar AB is made to rotate at the rate...Ch. 15.7 - The arm AB of length 16 ft is used to provide an...Ch. 15.7 - The remote manipulator system (RMS) shown is used...Ch. 15.7 - A disk with a radius of 120 mm rotates at the...Ch. 15.7 - The crane shown rotates at the constant rate...Ch. 15.7 - The vertical plate shown is welded to arm EFG, and...Ch. 15.7 - The vertical plate shown is welded to arm EFG, and...Ch. 15.7 - A disk of 180-mm radius rotates at the constant...Ch. 15.7 - A disk of 180-mm radius rotates at the constant...Ch. 15.7 - A square plate of side 2r is welded to a vertical...Ch. 15.7 - Two disks, each of 130-mm radius, are welded to...Ch. 15.7 - In Prob. 15.245, determine the velocity and...Ch. 15.7 - The position of the stylus tip A is controlled by...Ch. 15 - A wheel moves in the xy plane in such a way that...Ch. 15 - Two blocks and a pulley e connected by...Ch. 15 - A baseball pitching machine is designed to deliver...Ch. 15 - Knowing that inner gear A is stationary and outer...Ch. 15 - Knowing that at the instant shown bar AB has an...Ch. 15 - Knowing that at the instant shown rod AB has zero...Ch. 15 - Rod AB is attached to a collar at A and is fitted...Ch. 15 - flows through a curved pipe .AB that rotates with...Ch. 15 - A disk of 0.15-m radius rotates at the constant...Ch. 15 - Two rods AE and BD pass through holes drilled into...Ch. 15 - Rod BC of length 24 in. is connected by ball...Ch. 15 - In the positions shown, the thin rod moves at a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Link 2 of the mechanism shown rotates about the z-axis w.r.t. the ground (Link 1) at a constant +2rad/s. Link 3 rotates about a pin joint currently aligned with the y-axis at a constant -3rad/s. What is the angular velocity of the link? Angular velocity (rad/s): type your answer.... i+ type your answer... j+ type your answer... k. Answer with integers. Include a minus sign if necessary. Don't include a plus sign. Z A 2 3 — X ►arrow_forwardIn a slider crank mechanism the length of the crank OB is 181mm and length of the connecting rod is 556 mm. The center of gravity G of the connecting rod is 331 mm from the slider A. crank speed is 581 rpm clockwise. When the crank has turned 45 deg. From the inner dead center. Determine( using both relative velocity method and Instantaneous center method) 1. Velocity of the slider 2. Velocity of point G 3. Angular velocity of the connecting rod ABarrow_forwardThe mechanism below has a crank that revolves clockwise at point O at a speed of 2000 rpm. Using vector diagrams, determine: a) The linear velocity of the piston and the angular velocity of the link AB about A. b) The angular acceleration of the link AB about A and the inertial resistance produced by the piston. c)Using trigonometry, confirm your results for the velocity in parts (i), explain your reasons behind which method is preferable, and identify the error margin for your velocity answers.arrow_forward
- Link 2 of the mechanism shown rotates about the z-axis w.r.t. the ground (Link 1) at a constant +2rad/s. Link 3 rotates about a pin joint currently aligned with the y-axis at a constant -3rad/s. What is the angular acceleration of the link? Angular acceleration (rad/s^2): type your answer.... i+ type your answer... j+ type your answer.... k. Answer with integers (include zeros). Include a minus sign if necessary. Don't include a plus sign. Z 2 3arrow_forwardThe mechanism shown is composed of rod GPV pin-connected to rod DPE at point P. Knowing that the velocity of V is 4 m/s downwards, A. Redraw bar GPV and determine its instantaneous center of rotation (label it as point C). Specify all angles and distances needed. B. Determine the angular velocity of rod GPV. C. Determine the velocity of point P. D. Redraw bar DPE and determine its instantaneous center of rotation (label it as point C). Specify all angles and distances needed. E. Determine the angular velocity of rod DPE. Use IC method. Please don't show me the answer in chegg. I think there is an errorarrow_forwardCarry out the speed analysis of the following mechanism, obtaining the general expressions (for any position) for the angular velocity of the bar BD and the sliding speed of the collar P on the bar BD. The angular velocity of the bar AP is known. Assume that the position analysis has already been carried out. Also report the expressions for linear and angular velocity of collar P.arrow_forward
- 2. Two rigid links are rotating in the horizontal plane as shown in the figure below. The left-most link rotates with angular rate ₁ of 4 rad/s. The end of the right-most link holds a pin which is confined to move along a slot in the other link. The length of the right-most link 72 is 0.45 m. Determine the angular rate ₂ of the second link at the instant shown. Use 0₁ = 30°, 0₂ = 60°, and r₁ = 0.6 m. 0arrow_forward1. The annular wheel A rotates at 300 rpm about the fixed wheel S which has80 teeth. The three armed spider ‘a’ carries three planet wheels P and itruns at 180 rpm in the same direction of A. Determine the number of teethon P.arrow_forwardIn a four-link mechanism, the dimensions of the links are given as AB=50mm, BC=66mm, CD=56mm, and AD=100mm. At the instant when <DAB = 60° , the link AB has an angular velocity of 10.5 rad/sec in the counterclockwise direction. Both A and D lies in the horizontal plane.For the given configuration of the mechanism, determine the following: angular velocity of the link CD, angular velocity of the link BC, velocity of an offset point G on the link CD if CG=24mm,DG=44mm Instructions: configuration diagram Scale: 1:1 velocity diagram. Scale: 1m/s : 95mmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY