Concept explainers
Angular velocity and angular acceleration of rod attached at point B.
Answer to Problem 15.176P
The angular velocity
The angular acceleration
Explanation of Solution
Given information:
Angular velocity of rod AP is
Angular acceleration of rod AP is
Plane motion of a particle relative to a rotating frame is defined as,
In the above equation,
The Coriolis acceleration is a combination of
Where,
The Coriolis acceleration is defined as,
Calculation:
Apply sine rule for triangle ABP
Therefore,
The relative position
The relative position
Velocity
Acceleration
The relative velocity
The relative acceleration
Assume rod BP as the rotating frame of reference.
The velocity
Assume
The acceleration
Assume
The velocity
Equate components
Solve above equations
Therefore, the relative velocity
The Coriolis acceleration
Acceleration
Equate components
Solve above equations
Conclusion:
The angular velocity
The angular acceleration
Want to see more full solutions like this?
Chapter 15 Solutions
Vector Mechanics for Engineers: Dynamics
- Problem (6) The bent rod ABCD rotates about a line joining points A and E with a constant angular velocity of 12 rad/s. Knowing that the rotation is clockwise as viewed from E, determine the velocity and acceleration of corner C. 20cm A 25cm B 15cm 15cm 41cmarrow_forwardThe assembly shown consists of two rods and a rectangular plate BCDE that are welded together. The assembly rotates about the axis AB with a constant angular velocity of 16 rad/s. Knowing that the rotation is counterclockwise as viewed from B, determine the velocity and acceleration of corner E. 225 mm 500 mm The velocity of corner Eis ( The acceleration of corner Eis -( 300 mm m/s)i + 1 m/s²)i + x m/s)j. /s²)j + m/s +( m/s²)k.arrow_forwardA The 18-in.-radius fly wheel is rigidly attached to a 1.5-in. -radius shaft that can roll along parallel rails. Knowing that at the instant shown the center of the shaft has a velocity of 1.2 in/s and an acceleration of 0.5 in/s?, both directed down to the left, determine the acceleration (a) of point A, (b) of point B. 18 in. 20 Вarrow_forward
- A circular plate of 120 mm radius is supported by two bearings A and B as shown. The plate rotates about the rod joining A and B with a constant angular velocity of 26 rad/s. Knowing that, at the instant considered, the velocity of Point C is directed to the right, determine the velocity and acceleration of Point E.arrow_forward15.109 At the instant shown the angular velocity of the wheel is 2 rad/s clockwise and its angular acceleration is 3 rad/s² counterclockwise. Knowing that the wheel rolls without slipping, determine the location of the point on the wheel with zero acceleration at this instant. Fig. P15.109 600 mmarrow_forward5.- Knowing that at the instant shown bar AB has an angular velocity of 4 rad/s and an angular acceleration of 2 rad/s?, both clockwise, determine the angular acceleration (a) of bar BD, (b) of bar DE by using the vector approach. 100 mm 175 mm - B A 200 mm 75 mm D Earrow_forward
- The bent rod ABCDE rotates about a line joining points A and E with a constant angular velocity of 9 rad/s. Knowing that the rotation is clockwise as viewed from E , determine the velocity and acceleration of corner C.arrow_forward6) Bar BDE is attached to two links AB and CD. Knowing that at the instant shown link AB rotates with a constant angular velocity of 3 rad/s clockwise, determine the acceleration (a) of point D, (b) of point E. 19.1 cm 19.1 cm C -30.5 cm -22.9 cm- B ODarrow_forwardThe assembly shown consists of two rods and a rectangular plate BCDE that are welded together. The assembly rotates about the axis AB with a constant angular velocity of 16 rad/s. Knowing that the rotation is counterclockwise as viewed from B, determine the velocity and acceleration of corner E. 225 mm 500 mm The velocity of corner Eis ( The acceleration of corner Eis A 300 mm m/s)i + ( m/s²)i + m/s)j. | m/s²)j + m/s2)k.arrow_forward
- Problem (8) The belt shown moves over two pulleys without slipping. At the instant shown the pulleys are rotating clockwise and the speed of point B on the belt is 4 m/s, increasing at the rate of 32 m/s?. Determine, at this instant, (a) the angular velocity and angular acceleration of each pulley, (b) the acceleration of point P on pulley C. B 160 mm fi00 mmarrow_forwardplease show presentation, drawing diagram, vector’s forces & position, etc.. and showing work steps. thank youarrow_forwardThe outer gear A rotates with an angular velocity of 2 rad/s counterclockwise. Knowing that the angular velocity of the intermediate gear B is 4 rad/s clockwise, determine: 1. The angular velocity of the arm ABC 2. The angular velocity of the outer gear C. 5 in. 10 in. B 15 in. 15 in.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY