
Concept explainers
Three belts move over tow pulleys without slipping in the speed reduction system shown. At the instant shown, the velocity of point A on the input belt is 2 ft/s to the right, decreasing at the rate of 6 ft/s2. Determine, at the instant, (a) the velocity and acceleration of point C on the output belt, (b) the acceleration of point B on the output pulley.

(a)
The velocity and acceleration of point C.
Answer to Problem 15.23P
The velocity of point C is
The acceleration of point C is
Explanation of Solution
Given Information:
The velocity of point A on the input belt is
Write the expression for the angular velocity of the left side pulley.
Here, the velocity of point A is
Write the expression for the angular acceleration of the left side pulley.
Here, the tangential acceleration of point A is
Write the expression for the velocity of belt.
Here, the inner diameter of the left side pulley is
Write the expression for acceleration of intermediate belt.
Write the expression for the angular velocity of right side pulley.
Here, the outer diameter of the right-side pulley is
Write the expression to calculate the angular acceleration of the right side pulley.
Write the expression to calculate the velocity of point C.
Here, the inner diameter of the right-side pulley is
Write the expression to calculate the acceleration of point C.
Calculation:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Conclusion:
The velocity of point C is
The acceleration of point C is

(b)
The acceleration of point B.
Answer to Problem 15.23P
The acceleration of point B is
Explanation of Solution
Write the expression for the normal acceleration of point B.
Write the expression for tangential acceleration of point B.
Write the expression for the resultant acceleration.
Calculation:
Substitute
Substitute
Substitute
Conclusion:
The acceleration of point B is
Want to see more full solutions like this?
Chapter 15 Solutions
Vector Mechanics for Engineers: Dynamics
- Problem 1 (65 pts, suggested time 50 mins). An elastic string of constant line tension1T is pinned at x = 0 and x = L. A constant distributed vertical force per unit length p(with units N/m) is applied to the string. Under this force, the string deflects by an amountv(x) from its undeformed (horizontal) state, as shown in the figure below.The PDE describing mechanical equilibrium for the string isddx Tdvdx− p = 0 . (1)(a) [5pts] Identify the BCs for the string and identify their type (essential/natural). Writedown the strong-form BVP for the string, including PDE and BCs.(b) [10pts] Find the analytical solution of the BVP in (a). Compute the exact deflectionof the midpoint v(L/2).(c) [15pts] Derive the weak-form BVP.(d) [5pts] What is the minimum number of linear elements necessary to compute the deflection of the midpoint?(e) [15pts] Write down the element stiffness matrix and the element force vector for eachelement.arrow_forwardProblem 1 (35 pts). An elastic string of constant line tension1 T is pinned at x = 0 andx = L. A constant distributed vertical force per unit length p (with units N/m) is appliedto the string. Under this force, the string deflects by an amount v(x) from its undeformed(horizontal) state, as shown in the figure below.Force equilibrium in the string requires thatdfdx − p = 0 , (1)where f(x) is the internal vertical force in the string, which is given byf = Tdvdx . (2)(a) [10pts] Write down the BVP (strong form) that the string deflection v(x) must satisfy.(b) [2pts] What order is the governing PDE in the BVP of (a)?(c) [3pts] Identify the type (essential/natural) of each boundary condition in (a).(d) [20pts] Find the analytical solution of the BVP in (a).arrow_forwardProblem 2 (25 pts, (suggested time 15 mins). An elastic string of line tension T andmass per unit length µ is pinned at x = 0 and x = L. The string is free to vibrate, and itsfirst vibration mode is shown below.In order to find the frequency of the first mode (or fundamental frequency), the string isdiscretized into a certain number of linear elements. The stiffness and mass matrices of thei-th element are, respectivelyESMi =TLi1 −1−1 1 EMMi =Liµ62 11 2 . (2)(a) [5pts] What is the minimum number of linear elements necessary to compute the fundamental frequency of the vibrating string?(b) [20pts] Assemble the global eigenvalue problem and find the fundamental frequency ofvibration of the stringarrow_forward
- I need part all parts please in detail (including f)arrow_forwardProblem 3 (10 pts, suggested time 5 mins). In class we considered the mutiphysics problem of thermal stresses in a rod. When using linear shape functions, we found that the stress in the rod is affected by unphysical oscillations like in the following plot E*(ux-a*T) 35000 30000 25000 20000 15000 10000 5000 -5000 -10000 0 Line Graph: E*(ux-a*T) MULT 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Arc length (a) [10pts] What is the origin of this issue and how can we fix it?arrow_forwardanswer the questions and explain all of it in words. Ignore where it says screencast and in class explanationarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





