College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 15, Problem 8P
* Jeopardy problem A gas process is described mathematically as follows:
100 J + (-P) (0.001 m3) = 0. Pose a problem for which this description could be the answer. Describe the process macroscopically and microscopically.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
College Physics
Ch. 15 - Review Question 15.1 Imagine that a balloon...Ch. 15 - Prob. 2RQCh. 15 - Prob. 3RQCh. 15 - Review Question 15.4 Describe two situations in...Ch. 15 - Prob. 5RQCh. 15 - Review Question 15.6 Why are the units for...Ch. 15 - Prob. 7RQCh. 15 - An ideal gas in a container is separated with a...Ch. 15 - 2. A container of gas has a movable piston, which...Ch. 15 - Prob. 3MCQ
Ch. 15 - Prob. 4MCQCh. 15 - 5. How much heat is stored in 10 kg of water at...Ch. 15 - We define the specific heat of a material as the...Ch. 15 - Prob. 7MCQCh. 15 - Figure Q15.8 shows a P-versus-V graph for two...Ch. 15 - 9. An electric heater is keeping the inside of a...Ch. 15 - Match each heating mechanism (left column) with a...Ch. 15 - 11. Your friend says, "Heat rises." Do you agree...Ch. 15 - Suggest practical ways for determining the...Ch. 15 - Suggest practical ways to measure heats of melting...Ch. 15 - Prob. 14CQCh. 15 - 15. Why does an egg take the same time interval to...Ch. 15 - Why does food cook faster in a pressure cooker...Ch. 15 - A potato into which several nails have been pushed...Ch. 15 - Explain why double-paned windows help reduce...Ch. 15 - 19. The water in a paper cup can be boiled by...Ch. 15 - Provide two reasons why blowing across hot soup or...Ch. 15 - 21. Placing a moistened finger in the wind can...Ch. 15 - Why does covering a keg of beer with wet towels on...Ch. 15 - 23. Explain why dogs can cool themselves by...Ch. 15 - 24. Some houses are heated by hot oil or water...Ch. 15 - If on a hot summer day you place one bare foot on...Ch. 15 - 26. A woman has a cup of hot coffee and a small...Ch. 15 - * EST Estimate the thermal energy of the air in...Ch. 15 - A balloon of volume 0.010 m3 is filled with 1.0...Ch. 15 - * Imagine that the helium balloon from the...Ch. 15 - 4. *You accidentally release a helium-filled...Ch. 15 - * Helium in a cylinder with a piston and initially...Ch. 15 - Prob. 7PCh. 15 - 8. * Jeopardy problem A gas process is described...Ch. 15 - 9. * Jeopardy problem A gas process is described...Ch. 15 - 10. Use the first law of thermodynamics to devise...Ch. 15 - Prob. 11PCh. 15 - Prob. 12PCh. 15 - Prob. 13PCh. 15 - 14 *You are making a table for specific heats of...Ch. 15 - Prob. 15PCh. 15 - 16. * BIO EST Body temperature change A drop in...Ch. 15 - 17. * BIO Temperature change of a person A 50-kg...Ch. 15 - Determine the amount of thermal energy provided by...Ch. 15 - 19. EST Estimate the time interval required for a...Ch. 15 - Prob. 20PCh. 15 - * BIO Exercising warms body A 50-kg woman...Ch. 15 - Prob. 22PCh. 15 - * You add 20C water to 0.20 kg of 40C soup After a...Ch. 15 - BIO Cooling a hot child A 30-kg child has a...Ch. 15 - Prob. 25PCh. 15 - 26. * You pour 250 g of tea into a Styrofoam cup,...Ch. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - 29. Determine the energy needed to change a...Ch. 15 - 30. * When of energy is removed from 0.60 kg of...Ch. 15 - Prob. 31PCh. 15 - C that must be added to a cup with 250 g of tea at...Ch. 15 - An ice-making machine removes thermal energy from...Ch. 15 - Prob. 34PCh. 15 - Prob. 35PCh. 15 - 36. How much energy is required to convert (a)...Ch. 15 - 37. Cooling with alcohol rub During a back rub, 80...Ch. 15 - 38. Energy in a lightning flash A lightning flash...Ch. 15 - 39 A kettle containing 0.75 kg of boiling water...Ch. 15 - Prob. 40PCh. 15 - * EST Energy changes when it rains Estimate the...Ch. 15 - 42. * Insulating a house You insulate your house...Ch. 15 - C and the outside temperature is -10C?Ch. 15 - Prob. 44PCh. 15 - 45. While blowing across the bowl of soup in the...Ch. 15 - Prob. 46PCh. 15 - BIO Marathon You are training for a marathon While...Ch. 15 - Prob. 48PCh. 15 - 49. * A canteen is covered with wet canvas. If 15...Ch. 15 - * EST Evaporative cooling Each year a layer of...Ch. 15 - Prob. 51PCh. 15 - BIO Tree leaf A tree leaf of mass of 0.80 g and...Ch. 15 - Warming a spaceship Your friend says that natural...Ch. 15 - Prob. 54PCh. 15 - Which is less dense: dry or wet air? Explain your...Ch. 15 - * BIO Losing liquid while running While running,...Ch. 15 - Prob. 57PCh. 15 - 58. ** EST Global climate change Assume that...Ch. 15 - Prob. 59PCh. 15 - * Standard house 2 On the same day in the same...Ch. 15 - * Standard house 3 Suppose that the following...Ch. 15 - Prob. 62PCh. 15 - ** BIO EST Metabolism warms bedroom Because of its...Ch. 15 - Prob. 65GPCh. 15 - * EST House ventilation For purposes of...Ch. 15 - Prob. 67GPCh. 15 - ** EST Heating an event center with metabolic...Ch. 15 - Prob. 70RPPCh. 15 - Prob. 71RPPCh. 15 - Prob. 72RPPCh. 15 - Prob. 73RPPCh. 15 - Prob. 74RPPCh. 15 - Prob. 75RPPCh. 15 - Prob. 76RPPCh. 15 - Prob. 77RPPCh. 15 - Prob. 78RPPCh. 15 - Prob. 79RPPCh. 15 - Prob. 80RPP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Police Captain Jeffers has suffered a myocardial infarction. a. Explain to his (nonmedically oriented) family w...
Human Physiology: An Integrated Approach (8th Edition)
The distances you obtained in Question 3 are for only one side of the ridge. Assuming that a ridge spreads equa...
Applications and Investigations in Earth Science (9th Edition)
15. A woman with severe discoloration of her tooth enamel has four children with a man who has normal tooth ena...
Genetic Analysis: An Integrated Approach (3rd Edition)
SYNTHESIZE YOUR KNOWLEDGE Watennelon snow in Antarctica is caused by a species of photosynthetic green algae th...
Campbell Biology (11th Edition)
The glycine cleavage system is a group of four enzymes that together catalyze the following reaction: glycine+T...
Organic Chemistry (8th Edition)
2 Of the uterus, small intestine, spinal cord, and heart, which is/are in the dorsal body cavity?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Which one of the following statements is true? (a) The path on a PV diagram always goes from the smaller volume to the larger volume. (b) The path on a PV diagram always goes from the smaller pressure to the larger pressure. (c) The area under the path on a PV diagram is always equal to the work done on a gas. (d) The area under the path on a PV diagram is always equal in magnitude to the work done on a gas.arrow_forwardOne mole of an ideal gas is contained in a cylinder with a movable piston. The initial pressure, volume, and temperature are Pi, Vi, and Ti, respectively. Find the work done on the gas in the following processes. In operational terms, describe how to carry out each process and show each process on a PV diagram. (a) an isobaric compression in which the final volume is one-half the initial volume (b) an isothermal compression in which the final pressure is four times the initial pressure (c) an isovolumetric process in which the final pressure is three times the initial pressurearrow_forwardA gas is in a container of volume V0 at pressure P0. It is being pumped out of the container by a piston pump. Each stroke of the piston removes a volume Vs through valve A and then pushes the air out through valve B as shown in Figure P19.74. Derive an expression that relates the pressure Pn of the remaining gas to the number of strokes n that have been applied to the container. FIGURE P19.74arrow_forward
- A sealed cubical container 20.0 cm on a side contains a gas with three times Avogadros number of neon atoms at a temperature of 20.0C. (a) Find the internal energy of the gas. (b) Find the total translational kinetic energy of the gas. (c) Calculate the average kinetic energy per atom, (d) Use Equation 10.13 to calculate the gas pressure. (e) Calculate the gas pressure using the ideal gas law (Eq. 10.8).arrow_forward(a) If you toss 10 coins, what percent of the time will you get the three most likely macrostates (6 heads and 4 tails, 5 heads and 5 tails, 4 heads and 6 tails)? (b) You can realistically toss 10 coins and count the number of heads and tails about twice a minute. At mat rate, how long will it take on average to get either 10 heads and 0 tails or 0 heads and 10 tails?arrow_forwardA hand—driven tire pump has a piston with a 2.50cm diameter and a maximum stroke of 30.0 cm. (a) How much work do you do in one stroke if the average gauge pressure is 2.40105N/m2 (about 35 psi)? (b) What average force do you exert on the piston, neglecting friction and gravitational force?arrow_forward
- (a) An ideal gas occupies a volume of 1.0 cm3 at 20.C and atmospheric pressure. Determine the number of molecules of gas in the container, (b) If the pressure of the 1.0-cm3 volume is reduced to 1.0 1011 Pa (an extremely good vacuum) while the temperature remains constant, how many moles of gas remain in the container?arrow_forwardIn a cylinder of an automobile engine, immediately after combustion the gas is confined to a volume of 50.0 cm3 and has an initial pressure of 3.00 106 Pa. The piston moves outward to a final volume of 300 cm3, and the gas expands without energy transfer by heat, (a) What is the final pressure of the gas? (b) How much work is done by the gas in expanding?arrow_forwardA vertical cylinder of cross-sectional area A is fitted with a tight-fitting, frictionless piston of mass m (Fig. P16.56). The piston is not restricted in its motion in any way and is supported by the gas at pressure P below it. Atmospheric pressure is P0. We wish to find die height h in Figure P16.56. (a) What analysis model is appropriate to describe the piston? (b) Write an appropriate force equation for the piston from this analysis model in terms of P, P0, m, A, and g. (c) Suppose n moles of an ideal gas are in the cylinder at a temperature of T. Substitute for P in your answer to part (b) to find the height h of the piston above the bottom of the cylinder.arrow_forward
- In the text, it was shown that N/V=2.681025m3 for gas at STP. (a) Show that this quantity is equivalent to N/V=2.681019cm3, as stated. (b) About how many atoms are mere in one m3 (a cubic micrometer) at STP? (c) What does your answer to part (b) imply about the separation of Mama and molecules?arrow_forwardFigure P20.45 shows a phase diagram of carbon dioxide in terms of pressure and temperature, a. Use the phase diagram to explain why dry ice (solid carbon dioxide) sublimates into vapor at atmospheric pressure rather than melting into a liquid. At what temperature does the dry ice sublimate when at atmospheric pressure? b. Estimate what pressure would be needed to liquefy carbon dioxide at room temperature.arrow_forward(a) Construct a table showing the macro states and all of the individual microstates for tossing 13 coins. (Use Table 15.5 as a guide.) (b) How many macro states are there? (c) What is the total number of microstates? (d) What percent chance is here of tossing 5 heads and 1 tail? (e) How much more likely are you to toss 3 heads and 3 tails than 5 heads and 1 tail? (Take me ratio of the number of microstates to find out.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY