Figure Q15.8 shows a P-versus-V graph for two processes, A and B, that are performed with the same amount of ideal gas Process A is an isothermal process. Which of the following statements are correct? (More than one statement may be correct.)
a. The final and the initial temperatures in process B can be different than in process A.
b. The final and the initial temperatures in process B are always the same as in process A.
c. The work done by the gas on the environment is the same in both processes.
d. The work done by the gas on the environment in process B is greater than that in process A.
e. The work done by the gas on the environment in process B is smaller than that in process A.
f. The temperature of the gas in process B is first increasing and then decreasing.
g. The temperature of the gas in process B is first decreasing and then increasing.
h. The temperature of the gas in process B is constant.
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
College Physics
Additional Science Textbook Solutions
Campbell Essential Biology (7th Edition)
Campbell Biology in Focus (2nd Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Chemistry: The Central Science (14th Edition)
Applications and Investigations in Earth Science (9th Edition)
Biology: Life on Earth with Physiology (11th Edition)
- A power plant has been proposed that would make use of the temperature gradient in the ocean. The system is to operate between 20.0C (surface water temperature) and 5.00C (water temperature at a depth of about 1 km). (a) What is the maximum efficiency of such a system? (b) If the useful power output of the plant is 75.0 MW, how much energy is absorbed per hour? (c) In view of your answer to part (a), do you think such a system is worthwhile (considering that there is no charge for fuel)?arrow_forward(a) In reaching equilibrium, how much heat transfer occurs from 1.00 kg of water at 40.0C when it is placed in contact with 1.00 kg of 20.0C water in reaching equilibrium? (b) What is the change in entropy due to this heat transfer? (c) How much work is made unavailable, taking the lowest temperature to be 20.0C ? Explicitly show how you follow the steps in the Problem-Solving Strategies for Entropy.arrow_forward(a) What is the best coefficient of performance for a heat pump that has a hot reservoir temperature of 50.0C and a cold reservoir temperature of 20.0C ? (b) How much heat transfer occurs into the warm environment if 3.60107J of work (10.0kWh) is put into it? (c) If the cost of this work input is 10.0cent/kWh, haw does its cost compare with the direct heat transfer achieved by burning natural gas at a cost of 85.0 cents per therm. (A therm is a common unit of energy for natural gas and equals 1.055108J .)arrow_forward
- (a) If you shake a jar full of jelly beans of different sizes, the larger beans tend to appear near the top and the smaller ones tend to fall to the bottom. Why? (b) Does this process violate the second law of thermodynamics?arrow_forward(a) How much food energy will a man metabolize in the process of doing 35.0 kJ of work with an efficiency of 5.00%? (b) How much heal transfer occurs to the environment to keep his temperature constant? Explicitly show how you follow the steps in the Problem—Solving Strategy for thermodynamics found in Problem-Solving Strategies for Thermodynamics.arrow_forward(a) What is the best coefficient of performance for a refrigerator that cools an environment at 30.0C and has heat transfer to another environment at 45.0C ? (b) How much work in joules must be done for a heat transfer of 4186 kJ from the cold environment? (c) What is the cost of doing this if the work costs 10.0 cents per 3.60106J (a kilowatthour)? (d) How many kJ of heat transfer occurs into the warm environment? (e) Discuss what type of refrigerator might operate between these temperatures.arrow_forward
- (a) Calculate the rate of heat transfer by radiation from a car radiator at 110C into a 50.0C environment, if the radiator has an emissivity of 0.750 and a 1.20m2 surface area. (b) Is this a significant fraction of the heat transfer by an automobile engine? To answer this, assume a horsepower of 200 hp (1.5 kW) and the efficiency of automobile engines as 25%.arrow_forward(a) If you toss 10 coins, what percent of the time will you get the three most likely macrostates (6 heads and 4 tails, 5 heads and 5 tails, 4 heads and 6 tails)? (b) You can realistically toss 10 coins and count the number of heads and tails about twice a minute. At mat rate, how long will it take on average to get either 10 heads and 0 tails or 0 heads and 10 tails?arrow_forward(a) How much heat transfer occurs to the environment by an electrical power station that uses 1.251014J of heat transfer into the engine with an efficiency of 42.0%? (b) What is the ratio of heat transfer to the environment to work output? (c) How much work is done?arrow_forward
- Practical steam engines utilize 450C steam, which is later exhausted at 270C. (a) What is the maximum eficiency that such a heat engine can have? (b) Since 270C steam is still quite hot, at second steam engine is sometimes operated using the exhaust of the first. What is the maximum eficiency of the second engine if its exhaust has a temperature of 150C ? (c) What is the overall eficiency of the two engines? (d) Show that this is the same eficiency as a single Carnot engine operating between 450C and 150C. Explicitly show how you follow the steps in the Problem-Solving Strategies for Thermodynamics.arrow_forwardSuppose an ideal (Carnot) heat pump could be constructed for use as an air conditioner. (a) Obtain an expression for the coefficient of performance (COP) for such an air conditioner in terms of Tb and Tc. (b) Would such an air conditioner operate on a smaller energy input if the difference in the operating temperatures were greater or smaller? (c) Compute the COP for such an air conditioner if the indoor temperature is 20.0C and the outdoor temperature is 40.0C.arrow_forwardUnreasonable Results (a) Suppose you want to design a steam engine that has heat transfer to the environment at 270C and has a Carnot eficiency of 0.800. What temperature of hot Steam must you use? (b) What is unreasonable about the temperature? (c) Which premise is unreasonable?arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College