College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 15, Problem 15CQ
Why does an egg take the same time interval to cook in water that is just barely boiling as in water that boils vigorously?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You just took a jar out of the fridge but you are unable to open it. You then decide to leave run hot water over the lid to open it. Why does it work?
(a) How much heat transfer is required to raise the temperature of a 0.766-kg aluminum pot containing 2.50 kg of water from 31 celcius to the boiling point and then boil away 0.766 kg of water?
(b) How long does this take if the rate of heat transfer is 500 W
Aluminum has a specific heat more than twice that of copper. Identical masses of aluminum and copper, both at 0°C, are dropped together into a can of hot water. When the system has come to
equilibrium,
O the difference in temperature between the aluminum and the copper depends on the amount of water in the can
O the aluminum is at a higher temperature than the copper
the copper is at a higher temperature than the aluminum
O the difference in temperature between the aluminum and the copper depends on the initial temperature of the water in the can
O the aluminum and copper are at the same temperature
Chapter 15 Solutions
College Physics
Ch. 15 - Review Question 15.1 Imagine that a balloon...Ch. 15 - Prob. 2RQCh. 15 - Prob. 3RQCh. 15 - Review Question 15.4 Describe two situations in...Ch. 15 - Prob. 5RQCh. 15 - Review Question 15.6 Why are the units for...Ch. 15 - Prob. 7RQCh. 15 - An ideal gas in a container is separated with a...Ch. 15 - 2. A container of gas has a movable piston, which...Ch. 15 - Prob. 3MCQ
Ch. 15 - Prob. 4MCQCh. 15 - 5. How much heat is stored in 10 kg of water at...Ch. 15 - We define the specific heat of a material as the...Ch. 15 - Prob. 7MCQCh. 15 - Figure Q15.8 shows a P-versus-V graph for two...Ch. 15 - 9. An electric heater is keeping the inside of a...Ch. 15 - Match each heating mechanism (left column) with a...Ch. 15 - 11. Your friend says, "Heat rises." Do you agree...Ch. 15 - Suggest practical ways for determining the...Ch. 15 - Suggest practical ways to measure heats of melting...Ch. 15 - Prob. 14CQCh. 15 - 15. Why does an egg take the same time interval to...Ch. 15 - Why does food cook faster in a pressure cooker...Ch. 15 - A potato into which several nails have been pushed...Ch. 15 - Explain why double-paned windows help reduce...Ch. 15 - 19. The water in a paper cup can be boiled by...Ch. 15 - Provide two reasons why blowing across hot soup or...Ch. 15 - 21. Placing a moistened finger in the wind can...Ch. 15 - Why does covering a keg of beer with wet towels on...Ch. 15 - 23. Explain why dogs can cool themselves by...Ch. 15 - 24. Some houses are heated by hot oil or water...Ch. 15 - If on a hot summer day you place one bare foot on...Ch. 15 - 26. A woman has a cup of hot coffee and a small...Ch. 15 - * EST Estimate the thermal energy of the air in...Ch. 15 - A balloon of volume 0.010 m3 is filled with 1.0...Ch. 15 - * Imagine that the helium balloon from the...Ch. 15 - 4. *You accidentally release a helium-filled...Ch. 15 - * Helium in a cylinder with a piston and initially...Ch. 15 - Prob. 7PCh. 15 - 8. * Jeopardy problem A gas process is described...Ch. 15 - 9. * Jeopardy problem A gas process is described...Ch. 15 - 10. Use the first law of thermodynamics to devise...Ch. 15 - Prob. 11PCh. 15 - Prob. 12PCh. 15 - Prob. 13PCh. 15 - 14 *You are making a table for specific heats of...Ch. 15 - Prob. 15PCh. 15 - 16. * BIO EST Body temperature change A drop in...Ch. 15 - 17. * BIO Temperature change of a person A 50-kg...Ch. 15 - Determine the amount of thermal energy provided by...Ch. 15 - 19. EST Estimate the time interval required for a...Ch. 15 - Prob. 20PCh. 15 - * BIO Exercising warms body A 50-kg woman...Ch. 15 - Prob. 22PCh. 15 - * You add 20C water to 0.20 kg of 40C soup After a...Ch. 15 - BIO Cooling a hot child A 30-kg child has a...Ch. 15 - Prob. 25PCh. 15 - 26. * You pour 250 g of tea into a Styrofoam cup,...Ch. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - 29. Determine the energy needed to change a...Ch. 15 - 30. * When of energy is removed from 0.60 kg of...Ch. 15 - Prob. 31PCh. 15 - C that must be added to a cup with 250 g of tea at...Ch. 15 - An ice-making machine removes thermal energy from...Ch. 15 - Prob. 34PCh. 15 - Prob. 35PCh. 15 - 36. How much energy is required to convert (a)...Ch. 15 - 37. Cooling with alcohol rub During a back rub, 80...Ch. 15 - 38. Energy in a lightning flash A lightning flash...Ch. 15 - 39 A kettle containing 0.75 kg of boiling water...Ch. 15 - Prob. 40PCh. 15 - * EST Energy changes when it rains Estimate the...Ch. 15 - 42. * Insulating a house You insulate your house...Ch. 15 - C and the outside temperature is -10C?Ch. 15 - Prob. 44PCh. 15 - 45. While blowing across the bowl of soup in the...Ch. 15 - Prob. 46PCh. 15 - BIO Marathon You are training for a marathon While...Ch. 15 - Prob. 48PCh. 15 - 49. * A canteen is covered with wet canvas. If 15...Ch. 15 - * EST Evaporative cooling Each year a layer of...Ch. 15 - Prob. 51PCh. 15 - BIO Tree leaf A tree leaf of mass of 0.80 g and...Ch. 15 - Warming a spaceship Your friend says that natural...Ch. 15 - Prob. 54PCh. 15 - Which is less dense: dry or wet air? Explain your...Ch. 15 - * BIO Losing liquid while running While running,...Ch. 15 - Prob. 57PCh. 15 - 58. ** EST Global climate change Assume that...Ch. 15 - Prob. 59PCh. 15 - * Standard house 2 On the same day in the same...Ch. 15 - * Standard house 3 Suppose that the following...Ch. 15 - Prob. 62PCh. 15 - ** BIO EST Metabolism warms bedroom Because of its...Ch. 15 - Prob. 65GPCh. 15 - * EST House ventilation For purposes of...Ch. 15 - Prob. 67GPCh. 15 - ** EST Heating an event center with metabolic...Ch. 15 - Prob. 70RPPCh. 15 - Prob. 71RPPCh. 15 - Prob. 72RPPCh. 15 - Prob. 73RPPCh. 15 - Prob. 74RPPCh. 15 - Prob. 75RPPCh. 15 - Prob. 76RPPCh. 15 - Prob. 77RPPCh. 15 - Prob. 78RPPCh. 15 - Prob. 79RPPCh. 15 - Prob. 80RPP
Additional Science Textbook Solutions
Find more solutions based on key concepts
APPLY 1.2 Express the following quantities in scientific notation
using fundamental SI units of mass and lengt...
Chemistry (7th Edition)
What type of cut would separate the brain into anterior and posterior parts?
Anatomy & Physiology (6th Edition)
Albinism in humans is inherited as a simple recessive trait. For the following families, determine the genotype...
Concepts of Genetics (12th Edition)
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
The distances you obtained in Question 3 are for only one side of the ridge. Assuming that a ridge spreads equa...
Applications and Investigations in Earth Science (9th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why is a person able to remove a piece of dry aluminum foil from a hot oven with bare fingers, whereas a burn results if there is moisture on the foil?arrow_forwardEqual masses of substance A at 10.0C and substance B at 90.0C are placed in a well-insulated container of negligible mass and allowed to come to equilibrium. If the equilibrium temperature is 75.0Q which substance has the larger specific heat? (a) substance A (b) substance B (c) The specific heats are identical. (d) The answer depends on the exact initial temperatures. (e) More information is required.arrow_forwardA pitcher throws a 0.142-kg baseball at 47.2 m/s. As it travels 16.8 m to home plate, the ball slows down to 42.5 m/s because of air resistance. Find the change in temperature of the air through which it passes. To find the greatest possible temperature change, you may make the following assumptions. Air has a molar specific heat of CP = 72IR and an equivalent molar mass of 28.9 g/mol. The process is so rapid that the cover of the baseball acts as thermal insulation and the temperature of the ball itself does not change. A change in temperature happens initially only for the air in a cylinder 16.8 m in length and 3.70 cm in radius. This air is initially at 20.0C.arrow_forward
- Object A is placed in thermal contact with a very large object B of unknown temperature. Objects A and B are allowed to reach thermal equilibrium; object Bs temperature does not change due to its comparative size. Object A is removed from thermal contact with B and placed in thermal contact with another object C at a temperature of 40C. Objects A and C are of comparable size. The temperature of C is observed to be unchanged. What is the temperature of object B?arrow_forwardBeryllium has roughly one-half the specific heat of water (H2O). Rank the quantities of energy input required to produce the following changes from the largest to the smallest. In your ranking, note any cases of equality, (a) raising the temperature of 1 kg of H2O from 20C to 26C (b) raising the temperature of 2 kg of H2O from 20C to 23C (c) raising the temperature of 2 kg of H2O from 1C to 4C (d) raising the temperature of 2 kg of beryllium from 1C to 2C (e) raising the temperature of 2 kg of H2O from -1C to 2Carrow_forwardIf you place 0 ice into 0 water in an insulated container, what will the net result be? Will there be less ice and more liquid water, or more ice and less liquid water, or will the amounts stay the same?arrow_forward
- A pot of water is boiling on a gas stove, and then you turn up the heat. What happens? (a) The temperature of the water starts increasing. (b) There is a tiny decrease in the rate of water loss by evaporation. (c) The rate of water lossed by evaporation increases. (d). There is an appreciable increase in both the rate of boiling and temperature of water (e). None of thesearrow_forwardA beaker of water at room temperature is placed in an enclosure, and the air pressure in the enclosure is slowly reduced. When the air pressure is reduced sufficiently, the water begins to boil. The temperature of the water does not rise when it boils; in fact, the temperature drops slightly. Explain these phenomena.arrow_forwardCondensation on a glass of ice water causes the ice to melt faster than it would otherwise. If 8.00 g of vapor condense on a glass containing both water and 200 g of ice, how many grams of the ice will melt as a result? Assume no other heat transfer occurs. Use Lv for water at 37 °C as a better approximation than Lv for water at 100 °C .)arrow_forward
- (a)How much heat transfer (in kcal) is required to raise the temperature of a 0.900 kg aluminum pot containing 1.50 kg of water from 20.0°C to the boiling point and then boil away 0.550 kg of water? Answer ___________ kcal (NO scientific notation ONLY Real Number) (b)How long (in s) does this take if the rate of heat transfer is 600 W (1 watt = 1 joule/second (1 W = 1 J/s))? Answer ______________ s (NO scientific notation ONLY Real Number)arrow_forwardSOLIDS Material Aluminum Brass Copper Glass Gold Ice Iron Lead Specific heat (J/kg-K) 921 Nickel Silver Styrofoam Zinc UNCC HEA 113 mdf 402 377 840 126 2095 461 130 502 239 1131 390 A 1.5 kg hammer strikes a 12 g brass nail into a wood board. The nail is horizontally aligned and at the moment of impact with the nail, the hammer had a speed of 8.1 m/s. Assume both the hammer and the nail come to a stop and that all of the thermal energy generated goes into heating the nail. A.) Determine how much the temperature of the nail will increase in K after one hit. AT after one hit = B.) Determine how much the temperature of the nail will increase in °C after one hit. AT after one hit = °C C.) From the moment the hammer struck the nail until the nail came to rest, 0.21 s passed. Determine the rate at which the thermal energy was generated (the power). P =arrow_forwardConsider the following pairs of materials. Which pair represents two materials, one of which is twice as hot as the other? a an ice cube at 253 K, flames from a circus fire-eater at 233 °C b boiling water at 100 °C, a glass of water at 122 °F c boiling water at 100 °C, frozen methane at -50 °C d boiling water at 100 °C, frozen methane at -50 Karrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Thermal Expansion and Contraction of Solids, Liquids and Gases; Author: Knowledge Platform;https://www.youtube.com/watch?v=9UtfegG4DU8;License: Standard YouTube License, CC-BY