College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 46P
To determine
The area covered by a solar panel if a person wishes to install at least five LED bulbs, an LCD TV and a microwave to be run using the panel, provided that the average intensity of sunlight on a photoelectric solar collector is
in an 8h time interval, and the efficiency of conversion to electricity is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A3#Estimate the power per unit area of thermal radiation emitted by the Sun.
15
Why we use cesium as a photo emissive surface ?
Cesium has large number of electrons
It has negative charge
O It has low work function
It emits electrons of same K.E
Q1
Chapter 15 Solutions
College Physics
Ch. 15 - Review Question 15.1 Imagine that a balloon...Ch. 15 - Prob. 2RQCh. 15 - Prob. 3RQCh. 15 - Review Question 15.4 Describe two situations in...Ch. 15 - Prob. 5RQCh. 15 - Review Question 15.6 Why are the units for...Ch. 15 - Prob. 7RQCh. 15 - An ideal gas in a container is separated with a...Ch. 15 - 2. A container of gas has a movable piston, which...Ch. 15 - Prob. 3MCQ
Ch. 15 - Prob. 4MCQCh. 15 - 5. How much heat is stored in 10 kg of water at...Ch. 15 - We define the specific heat of a material as the...Ch. 15 - Prob. 7MCQCh. 15 - Figure Q15.8 shows a P-versus-V graph for two...Ch. 15 - 9. An electric heater is keeping the inside of a...Ch. 15 - Match each heating mechanism (left column) with a...Ch. 15 - 11. Your friend says, "Heat rises." Do you agree...Ch. 15 - Suggest practical ways for determining the...Ch. 15 - Suggest practical ways to measure heats of melting...Ch. 15 - Prob. 14CQCh. 15 - 15. Why does an egg take the same time interval to...Ch. 15 - Why does food cook faster in a pressure cooker...Ch. 15 - A potato into which several nails have been pushed...Ch. 15 - Explain why double-paned windows help reduce...Ch. 15 - 19. The water in a paper cup can be boiled by...Ch. 15 - Provide two reasons why blowing across hot soup or...Ch. 15 - 21. Placing a moistened finger in the wind can...Ch. 15 - Why does covering a keg of beer with wet towels on...Ch. 15 - 23. Explain why dogs can cool themselves by...Ch. 15 - 24. Some houses are heated by hot oil or water...Ch. 15 - If on a hot summer day you place one bare foot on...Ch. 15 - 26. A woman has a cup of hot coffee and a small...Ch. 15 - * EST Estimate the thermal energy of the air in...Ch. 15 - A balloon of volume 0.010 m3 is filled with 1.0...Ch. 15 - * Imagine that the helium balloon from the...Ch. 15 - 4. *You accidentally release a helium-filled...Ch. 15 - * Helium in a cylinder with a piston and initially...Ch. 15 - Prob. 7PCh. 15 - 8. * Jeopardy problem A gas process is described...Ch. 15 - 9. * Jeopardy problem A gas process is described...Ch. 15 - 10. Use the first law of thermodynamics to devise...Ch. 15 - Prob. 11PCh. 15 - Prob. 12PCh. 15 - Prob. 13PCh. 15 - 14 *You are making a table for specific heats of...Ch. 15 - Prob. 15PCh. 15 - 16. * BIO EST Body temperature change A drop in...Ch. 15 - 17. * BIO Temperature change of a person A 50-kg...Ch. 15 - Determine the amount of thermal energy provided by...Ch. 15 - 19. EST Estimate the time interval required for a...Ch. 15 - Prob. 20PCh. 15 - * BIO Exercising warms body A 50-kg woman...Ch. 15 - Prob. 22PCh. 15 - * You add 20C water to 0.20 kg of 40C soup After a...Ch. 15 - BIO Cooling a hot child A 30-kg child has a...Ch. 15 - Prob. 25PCh. 15 - 26. * You pour 250 g of tea into a Styrofoam cup,...Ch. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - 29. Determine the energy needed to change a...Ch. 15 - 30. * When of energy is removed from 0.60 kg of...Ch. 15 - Prob. 31PCh. 15 - C that must be added to a cup with 250 g of tea at...Ch. 15 - An ice-making machine removes thermal energy from...Ch. 15 - Prob. 34PCh. 15 - Prob. 35PCh. 15 - 36. How much energy is required to convert (a)...Ch. 15 - 37. Cooling with alcohol rub During a back rub, 80...Ch. 15 - 38. Energy in a lightning flash A lightning flash...Ch. 15 - 39 A kettle containing 0.75 kg of boiling water...Ch. 15 - Prob. 40PCh. 15 - * EST Energy changes when it rains Estimate the...Ch. 15 - 42. * Insulating a house You insulate your house...Ch. 15 - C and the outside temperature is -10C?Ch. 15 - Prob. 44PCh. 15 - 45. While blowing across the bowl of soup in the...Ch. 15 - Prob. 46PCh. 15 - BIO Marathon You are training for a marathon While...Ch. 15 - Prob. 48PCh. 15 - 49. * A canteen is covered with wet canvas. If 15...Ch. 15 - * EST Evaporative cooling Each year a layer of...Ch. 15 - Prob. 51PCh. 15 - BIO Tree leaf A tree leaf of mass of 0.80 g and...Ch. 15 - Warming a spaceship Your friend says that natural...Ch. 15 - Prob. 54PCh. 15 - Which is less dense: dry or wet air? Explain your...Ch. 15 - * BIO Losing liquid while running While running,...Ch. 15 - Prob. 57PCh. 15 - 58. ** EST Global climate change Assume that...Ch. 15 - Prob. 59PCh. 15 - * Standard house 2 On the same day in the same...Ch. 15 - * Standard house 3 Suppose that the following...Ch. 15 - Prob. 62PCh. 15 - ** BIO EST Metabolism warms bedroom Because of its...Ch. 15 - Prob. 65GPCh. 15 - * EST House ventilation For purposes of...Ch. 15 - Prob. 67GPCh. 15 - ** EST Heating an event center with metabolic...Ch. 15 - Prob. 70RPPCh. 15 - Prob. 71RPPCh. 15 - Prob. 72RPPCh. 15 - Prob. 73RPPCh. 15 - Prob. 74RPPCh. 15 - Prob. 75RPPCh. 15 - Prob. 76RPPCh. 15 - Prob. 77RPPCh. 15 - Prob. 78RPPCh. 15 - Prob. 79RPPCh. 15 - Prob. 80RPP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A monocrystalline silicon solar panel (active area: 1m2 )has an energy conversion efficiency of 20%. What is the power output when irradiance of 800 W/m2 is shining on the solar panel? a. 320 W. b. 80 W. c. 240 W. d. 160 W. e. 400 W.arrow_forwardII. Power A. Sample Problems: 1 W-500 Joules t=25 seconds P=? 1 P=25 watts W-5000 Joules t=? 1 P=170 watts t=20 seconds W = ? bons Formula: Substitution: Answer with unit of measure: Formula: Substitution: Answer with unit of measure: Formula: Substitution: Answer with unit of measure: how I msidor siqma2 A 21519m 02-b W 1 If a man moves a large box that weighs 10 Newtons 20 meters in 30 seconds, how much power was used?arrow_forward4. Assuming a filament in a 100 W light bulb acts as a perfect blackbody (e = 1). what is the temperature of the hottest portion of the filament if it has a surface area of 6.3 105 m²? The Stefan-Boltzmann constant is 5.67 x 10-8 J/(s. m². K*). a) 130.8 K b) 1100.21 K c) 2300.21 K d) 5800.5 K 5. During an evening news broadcast in Helsinki, Finland, the meteorologist indicated that the day's lowest temperature was -6.0 °C. The corresponding value of this temperature on the Fahrenheit scale is ........ a) -7.2 °F b) 4.0 °F c) 21.2 °F d) 25.5 °Farrow_forward
- C. Examine how different photons in the simulation affect each molecule. Record your observations for each combination in a few descriptive words. Microwave 8 CO N2 02 CO2 H2O NO2 03 Infrared Visible Light Ultraviolet D. Which molecule(s) were not affected by any of the radiation in the sim? Why might this be important? (Hint: think about what molecules are commonly found in our air and atmosphere) E. Examine your observations above and summarize the effects of each kind of radiation on the molecules in the simulation. Effect(s) on Molecules Microwave Infrared Visible Light Ultravioletarrow_forward6arrow_forwardQuestion A7 The intensity of the emitted radiation by a star is at a maximum at a wavelength of 78.9 nm. a) Calculate the surface temperature of the star. b) Calculate the ratio of the intensity radiated at 65.0 nm to the maximum intensity. Assume that the star radiates like an ideal blackbody.arrow_forward
- In the photoelectric effect experiment, what type of energy process is occurring? O A. Kinetic energy is transformed into thermal energy. O B. Radiant energy is transformed into potential energy. O C. Radiant energy is transformed into kinetic energy. O D. Electromagnetic energy is transformed into thermal energy. 9:44 PM 10:10 PM Aarrow_forward3. Dimensional analysis can provide insight into Stefan-Boltzmann's law for the radiation from a black body. According to this law the intensity of radiation, in units of J s-' m-², from a body at temperature Tis 1 = GT*, where e is Stefan-Boltzmann's constant. Because black-body radiation can be considered to be a gas of photons, i.e. quantum particles which move with velocity e with typical energies of the order of kT, the intensity I is a function of h, c and kT. Use dimensional analysis to confirm that Iis proportional to 7 and find the dependence of a on h and c.arrow_forwardA furnace emits radiation at 2000 K. Treating it as black body radiation, calculate the wavelength at which the emission is maximum. a.) 1.449 x 10 ^ -6 m b.) 2.449 x 10 ^ -6 m c.) 3.449 x 10 ^ -6 m d.) 4.449 x10 ^ -6 marrow_forward
- 30. Which, of the following, is not a characteristic of an irreversible process in a closed system, such as the aging of the universe? A. The randomness of the system will increase. B. The entropy of the system will increase. C. The probability of greater order is greater than the probability of lesser order. D. The nature of the system is to become less ordered.arrow_forward1a. Calculate the speed that a gas-phase nitrogen molecule, N2, would have if it had the same energy as an infrared photon (λ = 3.33 mm), a visible photon (λ = 630. nm), an ultraviolet photon (λ = 250. nm), and an X-ray photon (λ = 0.100 nm). b. What temperature would the gas have if it had the same energy as each one of the photons described in part (a)? Use the root mean square speed for this calculation.arrow_forwardQuestion 2 How many kilowatts will be radiated from a spherical black body (E=1) 17.1 cm in diameter at a temperature of 806°C?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning