College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 72RPP
To determine
The effect on cool dry air, after crossing a mountain top on a warm sunny day from the options provided:
a. Sink, because it is denser than the warmer air below.
b. Warm, because the surrounding gas does positive work in causing it to contract.
c. Not change, as the surrounding air transfers very little thermal energy by heating
d. a and b are correct.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
College Physics
Ch. 15 - Review Question 15.1 Imagine that a balloon...Ch. 15 - Prob. 2RQCh. 15 - Prob. 3RQCh. 15 - Review Question 15.4 Describe two situations in...Ch. 15 - Prob. 5RQCh. 15 - Review Question 15.6 Why are the units for...Ch. 15 - Prob. 7RQCh. 15 - An ideal gas in a container is separated with a...Ch. 15 - 2. A container of gas has a movable piston, which...Ch. 15 - Prob. 3MCQ
Ch. 15 - Prob. 4MCQCh. 15 - 5. How much heat is stored in 10 kg of water at...Ch. 15 - We define the specific heat of a material as the...Ch. 15 - Prob. 7MCQCh. 15 - Figure Q15.8 shows a P-versus-V graph for two...Ch. 15 - 9. An electric heater is keeping the inside of a...Ch. 15 - Match each heating mechanism (left column) with a...Ch. 15 - 11. Your friend says, "Heat rises." Do you agree...Ch. 15 - Suggest practical ways for determining the...Ch. 15 - Suggest practical ways to measure heats of melting...Ch. 15 - Prob. 14CQCh. 15 - 15. Why does an egg take the same time interval to...Ch. 15 - Why does food cook faster in a pressure cooker...Ch. 15 - A potato into which several nails have been pushed...Ch. 15 - Explain why double-paned windows help reduce...Ch. 15 - 19. The water in a paper cup can be boiled by...Ch. 15 - Provide two reasons why blowing across hot soup or...Ch. 15 - 21. Placing a moistened finger in the wind can...Ch. 15 - Why does covering a keg of beer with wet towels on...Ch. 15 - 23. Explain why dogs can cool themselves by...Ch. 15 - 24. Some houses are heated by hot oil or water...Ch. 15 - If on a hot summer day you place one bare foot on...Ch. 15 - 26. A woman has a cup of hot coffee and a small...Ch. 15 - * EST Estimate the thermal energy of the air in...Ch. 15 - A balloon of volume 0.010 m3 is filled with 1.0...Ch. 15 - * Imagine that the helium balloon from the...Ch. 15 - 4. *You accidentally release a helium-filled...Ch. 15 - * Helium in a cylinder with a piston and initially...Ch. 15 - Prob. 7PCh. 15 - 8. * Jeopardy problem A gas process is described...Ch. 15 - 9. * Jeopardy problem A gas process is described...Ch. 15 - 10. Use the first law of thermodynamics to devise...Ch. 15 - Prob. 11PCh. 15 - Prob. 12PCh. 15 - Prob. 13PCh. 15 - 14 *You are making a table for specific heats of...Ch. 15 - Prob. 15PCh. 15 - 16. * BIO EST Body temperature change A drop in...Ch. 15 - 17. * BIO Temperature change of a person A 50-kg...Ch. 15 - Determine the amount of thermal energy provided by...Ch. 15 - 19. EST Estimate the time interval required for a...Ch. 15 - Prob. 20PCh. 15 - * BIO Exercising warms body A 50-kg woman...Ch. 15 - Prob. 22PCh. 15 - * You add 20C water to 0.20 kg of 40C soup After a...Ch. 15 - BIO Cooling a hot child A 30-kg child has a...Ch. 15 - Prob. 25PCh. 15 - 26. * You pour 250 g of tea into a Styrofoam cup,...Ch. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - 29. Determine the energy needed to change a...Ch. 15 - 30. * When of energy is removed from 0.60 kg of...Ch. 15 - Prob. 31PCh. 15 - C that must be added to a cup with 250 g of tea at...Ch. 15 - An ice-making machine removes thermal energy from...Ch. 15 - Prob. 34PCh. 15 - Prob. 35PCh. 15 - 36. How much energy is required to convert (a)...Ch. 15 - 37. Cooling with alcohol rub During a back rub, 80...Ch. 15 - 38. Energy in a lightning flash A lightning flash...Ch. 15 - 39 A kettle containing 0.75 kg of boiling water...Ch. 15 - Prob. 40PCh. 15 - * EST Energy changes when it rains Estimate the...Ch. 15 - 42. * Insulating a house You insulate your house...Ch. 15 - C and the outside temperature is -10C?Ch. 15 - Prob. 44PCh. 15 - 45. While blowing across the bowl of soup in the...Ch. 15 - Prob. 46PCh. 15 - BIO Marathon You are training for a marathon While...Ch. 15 - Prob. 48PCh. 15 - 49. * A canteen is covered with wet canvas. If 15...Ch. 15 - * EST Evaporative cooling Each year a layer of...Ch. 15 - Prob. 51PCh. 15 - BIO Tree leaf A tree leaf of mass of 0.80 g and...Ch. 15 - Warming a spaceship Your friend says that natural...Ch. 15 - Prob. 54PCh. 15 - Which is less dense: dry or wet air? Explain your...Ch. 15 - * BIO Losing liquid while running While running,...Ch. 15 - Prob. 57PCh. 15 - 58. ** EST Global climate change Assume that...Ch. 15 - Prob. 59PCh. 15 - * Standard house 2 On the same day in the same...Ch. 15 - * Standard house 3 Suppose that the following...Ch. 15 - Prob. 62PCh. 15 - ** BIO EST Metabolism warms bedroom Because of its...Ch. 15 - Prob. 65GPCh. 15 - * EST House ventilation For purposes of...Ch. 15 - Prob. 67GPCh. 15 - ** EST Heating an event center with metabolic...Ch. 15 - Prob. 70RPPCh. 15 - Prob. 71RPPCh. 15 - Prob. 72RPPCh. 15 - Prob. 73RPPCh. 15 - Prob. 74RPPCh. 15 - Prob. 75RPPCh. 15 - Prob. 76RPPCh. 15 - Prob. 77RPPCh. 15 - Prob. 78RPPCh. 15 - Prob. 79RPPCh. 15 - Prob. 80RPP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A deepsea diver should breathe a gas mixture that has the same oxygen partial pressure as at sea level, where dry air contains 20.9% oxygen and has a total pressure of 1.01105N/m2. (a) What is me partial pressure of oxygen at sea level? (b) If the diver breathes a gas mixture at a pressure of 2.00106N/m2, what percent oxygen should it be to have the same oxygen partial pressure as at sea level?arrow_forwardSuppose a gasfilled incandescent light bulb is manufactured so that the gas inside the bulb is at atmospheric pressure when the bulb has a temperature of 20.0C. (a) Find the gauge pressure inside such a bulb when it is hot, assuming its average temperature is 60.0C (an approximation) and neglecting any change in volume due to thermal expansion or gas leaks. (b) The actual final pressure for the light bulb will be less than calculated in part (a) because the glass bulb will expand. What will the actual final pressure be, taking this into account? Is this a negligible difference?arrow_forwardUnreasonable Results (a) How many moles per cubic meter of an ideal gas are there at a pressure of 1.001014N/m2 and at 0C ? (b) What is unreasonable about this result? (c) Which premise or assumption is responsible?arrow_forward
- A high—pressure gas cylinder contains 50.13L of toxic gas at a pressure of 1.40107N/m2 and a temperature of 25.0C. Its value leaks after the cylinder is dropped. The cylinder is cooled to dry ice temperature (78.5C) to reduce the leak rate and pressure so that it can be safely repaired. (a) What is the final pressure in the tank, assuming a negligible amount of gas leaks while being cooled and that there is no phase change? (b) What is the final pressure it onetenth of the gas escapes? (c) To what temperature must the tank be cooled to reduce the pressure to 1.00 atm (assuming the gas does not change phase and that there is no leakage during cooling)? (d) Does cooling the tank appear to be a practical solution?arrow_forwardA 20.0-L tank of carbon dioxide gas (CO2) is at a pressure of 9.50 105 Pa and temperature of 19.0C (a) Calculate the temperature of the gas in Kelvin. (b) Use the ideal gas law to calculate the number of moles of gas in the tank. (c) Use the periodic table to compute the molecular weight of carbon dioxide, expressing it in grams per mole. (d) Obtain the number of grains of carbon dioxide in the tank. (e) A fire breaks out, raising the ambient temperature by 224.0 K while 82.0 g of gas leak out of the tank. Calculate the new temperature and the number of moles of gas remaining in the tank. (f) Using a technique analogous to that in Example 10.6b, find a symbolic expression for the final pressure, neglecting the change in volume of the tank. (g) Calculate the final pressure in the tank as a result of the fire and leakage.arrow_forward(a) If tossing 100 coins, how many ways (microstates) are there to get me three most likely macro states of 49 heads and 51 tails, 50 heads and 50 tails, and 51 heads and 49 tails? (b) What percent of the total possibilities is this? (Consult Table 15.4.)arrow_forward
- em>. The volume of an ideal gas enclosed in a thin, elastic membrane in a room at sea level where the air temperature is 18°C is 8 10-3 m3 .If the temperature of the room is increased by 10°C, what is the new volume of the gas?arrow_forwardUnreasonable Results Suppose the relative humidity is 80% on a day when the temperature is 30.0C. (a) What will the relative humidity be if the air cools to 25.0C and the vapor density remains constant? (b) What is unreasonable about this result? (c) Which premise is responsible?arrow_forward(a) Hydrogen molecules (molar mass is equal to 2.016 g/mol) have vrms equal to 193 m/s. What is the temperature? (b) Much of the gas near the Sun is atomic hydrogen (H rather than H2). Its temperature would have to be 1.5107 K for the speed vrms to equal the escape velocity from the Sun. What is that velocity?arrow_forward
- Model air as a diatomic ideal gas with M = 28.9 g/mol. A cylinder with a piston contains 1.20 kg of air at 25.0C and 2.00 105 Pa. Energy is transferred by heat into the system as it is permitted to expand, with the pressure rising to 4.00 105 Pa. Throughout the expansion, the relationship between pressure and volume is given by P = CV1/2 where C is a constant. Find (a) the initial volume, (b) the final volume, (c) the final temperature, (d) the work done on the air, and (e) the energy transferred by heat.arrow_forwardAtmospheric pressure amp Mt. Everest is 3.30104N/m2. (a) What is the partial pressure of oxygen there if it is 20.9% at me air? (b) What percent oxygen should a mountain climber breathe so that its partial pressure is the same as at sea level, where atmospheric pressure is 1.01105N/m2 ? (c) One of the most severe problems for those climbing very high mountains is the extreme drying of breathing passages. Why does this drying occur?arrow_forward(a) Use the ideal gas equation to estimate the temperature at which 1.00 kg of steam (molar mass M=18.0 g/mol) at a pressure of 1.50106 Pa occupies a volume of 0.220 m3. (b) The van der Waals constants for water are a=0.5537 Pa m6/mol2 and b=3.049105 m3/mol. Use the Van der Waals equation of state to estimate the temperature under the same conditions. (c) The actual temperature is 779 K. Which estimate is better? `arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning