College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 15, Problem 17P
* BIO Temperature change of a person A 50-kg person consumes about 2000 kcal of food in one day If
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Choose the most suitable definition for "heat".
Select one:
a. Flow of energy in structural units of chemical substances
b. Energy associated with the random motion of atoms and molecules
c. Energy stored in structural units of chemical substances
d. Difference between the final and initial thermal energy of a system
4. *You accidentally release a helium-filled balloon that rises in the atmos-
phere. As it rises, the temperature of the helium inside decreases from
20 °C to 10 °C. What happens to the average speed of helium atoms in the
balloon and the thermal energy of the helium inside the balloon? Describe
the assumptions you made.
2.
Chapter 15 Solutions
College Physics
Ch. 15 - Review Question 15.1 Imagine that a balloon...Ch. 15 - Prob. 2RQCh. 15 - Prob. 3RQCh. 15 - Review Question 15.4 Describe two situations in...Ch. 15 - Prob. 5RQCh. 15 - Review Question 15.6 Why are the units for...Ch. 15 - Prob. 7RQCh. 15 - An ideal gas in a container is separated with a...Ch. 15 - 2. A container of gas has a movable piston, which...Ch. 15 - Prob. 3MCQ
Ch. 15 - Prob. 4MCQCh. 15 - 5. How much heat is stored in 10 kg of water at...Ch. 15 - We define the specific heat of a material as the...Ch. 15 - Prob. 7MCQCh. 15 - Figure Q15.8 shows a P-versus-V graph for two...Ch. 15 - 9. An electric heater is keeping the inside of a...Ch. 15 - Match each heating mechanism (left column) with a...Ch. 15 - 11. Your friend says, "Heat rises." Do you agree...Ch. 15 - Suggest practical ways for determining the...Ch. 15 - Suggest practical ways to measure heats of melting...Ch. 15 - Prob. 14CQCh. 15 - 15. Why does an egg take the same time interval to...Ch. 15 - Why does food cook faster in a pressure cooker...Ch. 15 - A potato into which several nails have been pushed...Ch. 15 - Explain why double-paned windows help reduce...Ch. 15 - 19. The water in a paper cup can be boiled by...Ch. 15 - Provide two reasons why blowing across hot soup or...Ch. 15 - 21. Placing a moistened finger in the wind can...Ch. 15 - Why does covering a keg of beer with wet towels on...Ch. 15 - 23. Explain why dogs can cool themselves by...Ch. 15 - 24. Some houses are heated by hot oil or water...Ch. 15 - If on a hot summer day you place one bare foot on...Ch. 15 - 26. A woman has a cup of hot coffee and a small...Ch. 15 - * EST Estimate the thermal energy of the air in...Ch. 15 - A balloon of volume 0.010 m3 is filled with 1.0...Ch. 15 - * Imagine that the helium balloon from the...Ch. 15 - 4. *You accidentally release a helium-filled...Ch. 15 - * Helium in a cylinder with a piston and initially...Ch. 15 - Prob. 7PCh. 15 - 8. * Jeopardy problem A gas process is described...Ch. 15 - 9. * Jeopardy problem A gas process is described...Ch. 15 - 10. Use the first law of thermodynamics to devise...Ch. 15 - Prob. 11PCh. 15 - Prob. 12PCh. 15 - Prob. 13PCh. 15 - 14 *You are making a table for specific heats of...Ch. 15 - Prob. 15PCh. 15 - 16. * BIO EST Body temperature change A drop in...Ch. 15 - 17. * BIO Temperature change of a person A 50-kg...Ch. 15 - Determine the amount of thermal energy provided by...Ch. 15 - 19. EST Estimate the time interval required for a...Ch. 15 - Prob. 20PCh. 15 - * BIO Exercising warms body A 50-kg woman...Ch. 15 - Prob. 22PCh. 15 - * You add 20C water to 0.20 kg of 40C soup After a...Ch. 15 - BIO Cooling a hot child A 30-kg child has a...Ch. 15 - Prob. 25PCh. 15 - 26. * You pour 250 g of tea into a Styrofoam cup,...Ch. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - 29. Determine the energy needed to change a...Ch. 15 - 30. * When of energy is removed from 0.60 kg of...Ch. 15 - Prob. 31PCh. 15 - C that must be added to a cup with 250 g of tea at...Ch. 15 - An ice-making machine removes thermal energy from...Ch. 15 - Prob. 34PCh. 15 - Prob. 35PCh. 15 - 36. How much energy is required to convert (a)...Ch. 15 - 37. Cooling with alcohol rub During a back rub, 80...Ch. 15 - 38. Energy in a lightning flash A lightning flash...Ch. 15 - 39 A kettle containing 0.75 kg of boiling water...Ch. 15 - Prob. 40PCh. 15 - * EST Energy changes when it rains Estimate the...Ch. 15 - 42. * Insulating a house You insulate your house...Ch. 15 - C and the outside temperature is -10C?Ch. 15 - Prob. 44PCh. 15 - 45. While blowing across the bowl of soup in the...Ch. 15 - Prob. 46PCh. 15 - BIO Marathon You are training for a marathon While...Ch. 15 - Prob. 48PCh. 15 - 49. * A canteen is covered with wet canvas. If 15...Ch. 15 - * EST Evaporative cooling Each year a layer of...Ch. 15 - Prob. 51PCh. 15 - BIO Tree leaf A tree leaf of mass of 0.80 g and...Ch. 15 - Warming a spaceship Your friend says that natural...Ch. 15 - Prob. 54PCh. 15 - Which is less dense: dry or wet air? Explain your...Ch. 15 - * BIO Losing liquid while running While running,...Ch. 15 - Prob. 57PCh. 15 - 58. ** EST Global climate change Assume that...Ch. 15 - Prob. 59PCh. 15 - * Standard house 2 On the same day in the same...Ch. 15 - * Standard house 3 Suppose that the following...Ch. 15 - Prob. 62PCh. 15 - ** BIO EST Metabolism warms bedroom Because of its...Ch. 15 - Prob. 65GPCh. 15 - * EST House ventilation For purposes of...Ch. 15 - Prob. 67GPCh. 15 - ** EST Heating an event center with metabolic...Ch. 15 - Prob. 70RPPCh. 15 - Prob. 71RPPCh. 15 - Prob. 72RPPCh. 15 - Prob. 73RPPCh. 15 - Prob. 74RPPCh. 15 - Prob. 75RPPCh. 15 - Prob. 76RPPCh. 15 - Prob. 77RPPCh. 15 - Prob. 78RPPCh. 15 - Prob. 79RPPCh. 15 - Prob. 80RPP
Additional Science Textbook Solutions
Find more solutions based on key concepts
In this problem, you will verify statements made at the end of the power losses for Example 20.10. (a) What cur...
College Physics
Q14.8 You are captured by Martians, taken into their ship, and put to sleep. You awake some time later and find...
University Physics (14th Edition)
Meteorologists in the United States usually report barometer readings in inches. What are they talking about?
Essential University Physics (3rd Edition)
It was shown that the energy required to lift a satellite into a low Earth orbit (the change in potential energ...
University Physics Volume 1
13. What distinguishes an alcohol from an ether?
Conceptual Physical Science (6th Edition)
Each night you measure your height just before going to bed. When you arise each morning, you measure your heig...
Conceptual Integrated Science
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) The number of kilocalories in food is determined by calorimetry techniques in which the food is burned and the amount at heat transfer is measured. How many kilocalories per gram are there in a 5.00g peanut if the energy from burning it is transferred to 0.500 kg of water held in a 0.100kg aluminum cup, causing a 54.9C temperature increase? (b) Compare your answer to labeling information found on a package of peanuts and comment on whether the values are consistent.arrow_forwardIn 1801, Humphry Davy rubbed together pieces of ice inside an icehouse. He made sure that nothing in the environment was at a higher temperature than the rubbed pieces. He observed the production of drops of liquid water. Make a table listing this and other experiments or processes to illustrate each of the following situations, (a) A system can absorb energy by heat, increase in internal energy, and increase in temperature, (b) A system can absorb energy by heat and increase in internal energy without an increase in temperature, (c) A system can absorb energy by heat without increasing in temperature or in internal energy, (d) A system can increase in internal energy and in temperature without absorbing energy by heat, (e) A system can increase in internal energy without absorbing energy by heat or increasing in temperature.arrow_forwardThe Sun radiates energy at the rate of 3.801026W from its 5500C surface into dark empty space (a negligible fraction radiates onto Earth and the other planets). The effective temperature of deep space is 270C. (a) What is the increase in entropy in one day due to this heat transfer? (b) How much work is made unavailable?arrow_forward
- €69. Integrated Concepts (a) A large electrical power facility produces 1600 MW of “waste heat.” which is dissipated to the environment in cooling towers by warming air flowing through the towers by 500C. What is the necessary flow rate of air in m3/s ? (b) Is your result consistent with the large cooling towers used by many large electrical power plants?arrow_forwardA 4ton air conditioner removes 5.60107J (48,000 British thermal units) from a cold environment in 1.00 h. (a) What energy input in joules is necessary to do this if the air conditioner has an energy efficiency rating (EER) of 12.0? (b) What is the cost of doing this if the work costs 10.0 cents per 3.60106J (one kilowatt—hour)? (c) Discuss whether this cost seems realistic. Note that the energy efficiency rating (EER) of an air conditioner or refrigerator is defined to be the number of British thermal units of heat transfer from a cold environment per hour divided by the watts of power input.arrow_forwardIdentify the type of energy transferred to your body in each of the following as either internal energy, heat transfer, or doing work: (a) basking in sunlight (b) eating food; (c) riding an elevator to a higher floor.arrow_forward
- In some countries, liquid nitrogen is used on dairy trucks instead of mechanical refrigerators. A 3.00-hour delivery trip requires 200 L of liquid nitrogen, which has a density at 808kg/m3. (a) Calculate the heat transfer necessary to evaporate this amount of liquid nitrogen and raise its temperature to 300C. (Use cp and assume it is constant over the temperature range.) This value is the amount of cooling the liquid nitrogen supplies. (b) What is this heat transfer rate in kilowatthours? (c) Compare the amount of cooling obtained from melting an identical mass at 0C ice with that from evaporating the liquid nitrogen.arrow_forward. A 1,200-kg car going 25 m/s is brought to a stop using its brakes. Let's assume that a total of approximately 20 kg of iron in the brakes and wheels absorbs the heat produced by the friction. (a) What was the car's original kinetic energy? (b) After the ear has stopped, what is the change in temperature of the brakes and wheels?arrow_forwardConstruct Your Own Problem Consider a new model of commercial airplane having its brakes tested as a part of the initial flight permission procedure. The airplane is brought to takeoff speed and then stopped with the brakes alone. Construct a problem in which you calculate the temperature increase of the brakes during this process. You may assume most of the kinetic energy of the airplane is converted to thermal energy in the brakes and surrounding materials, and that little escapes. Note that the brakes are expected to become so hot in this procedure that they ignite and, in order to pass the test, the airplane must be able to withstand the fire for some time without a general conflagration.arrow_forward
- (a) A shirtless rider under a circus tent feels the heat radiating from the sunlit portion of the tent. Calculate the temperature of the tent canvas based on the following information: The shirtless rider’s skin temperature is 34.0C and has an emissivity of 0.970. The exposed area of skin is 0.400m2. He receives radiation at the rate of 20.0 W—half what you would calculate if the entire region behind him was hot. The rest of the surroundings are at 34.0C. (b) Discuss how this situation would change if the sun lit side of the tent was nearly pure white and if the rider was covered by a white tunic.arrow_forwardOne method at getting a tight fit, say of a metal peg in a hole in a metal block, is to manufacture the peg slightly larger than the hole. The peg is then inserted when at a different temperature than the block. Should the block he hotter or colder than the peg during insertion? Explain your answer.arrow_forwardA 75-kg sprinter accelerates from rest to a speed of 11.0 m/s in 5.0 s. (a) Calculate the mechanical work done by the sprinter during this time. (b) Calculate the average power the sprinter must generate. (c) If the sprinter converts food energy to mechanical energy with an efficiency of 25%, at what average rate is he burning Calories? (d) What happens to the other 75% of the food energy being used?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY