Organic And Biological Chemistry
Organic And Biological Chemistry
7th Edition
ISBN: 9781305081079
Author: STOKER, H. Stephen (howard Stephen)
Publisher: Cengage Learning,
bartleby

Concept explainers

Question
Book Icon
Chapter 15, Problem 15.74EP

(a)

Interpretation Introduction

Interpretation: To determine whether ornithine is associated with (1) transamination, (2) oxidative deamination, or (3) the urea cycle.

Concept introduction: Transamination reaction is a biochemical reaction that involves the transfer of an amino group. In transamination reaction exchange of an amino group from an α-amino acid with a keto group of α-keto acid. There occurs no net loss or gain of amino acid in transamination reaction.

A biochemical reaction in which an α-amino acid is converted into α-keto acid along with the release of an ammonium ion is known as oxidative deamination reaction.

A urea cycle is a cyclic biochemical pathway that involves the production of urea using ammonium ions and aspartate molecules as nitrogen sources. The reactants in the formation of carbamoyl phosphate are ammonium ion, water, and carbon dioxide.

(a)

Expert Solution
Check Mark

Answer to Problem 15.74EP

Ornithine is associated with the urea cycle.

Explanation of Solution

Ornithine is a nonstandard amino acid and accepts the entering carbamoyl phosphate group at the start of each urea cycle. It is encountered in the first step of the urea cycle.

Organic And Biological Chemistry, Chapter 15, Problem 15.74EP , additional homework tip  1

(b)

Interpretation Introduction

Interpretation: To determine whether NH4+ is associated with (1) transamination, (2) oxidative deamination, or (3) the urea cycle.

Concept introduction: Transamination reaction is a biochemical reaction that involves the transfer of an amino group. In transamination reaction exchange of an amino group from an α-amino acid with a keto group of α-keto acid. There occurs no net loss or gain of amino acid in transamination reaction.

A biochemical reaction in which an α-amino acid is converted into α-keto acid along with the release of an ammonium ion is known as oxidative deamination reaction.

A urea cycle is a cyclic biochemical pathway that involves the production of urea using ammonium ions and aspartate molecules as nitrogen sources. The reactants in the formation of carbamoyl phosphate are ammonium ion, water, and carbon dioxide.

(b)

Expert Solution
Check Mark

Answer to Problem 15.74EP

The ammonium ion (NH4+) is associated with the oxidative deamination reaction and the urea cycle.

Explanation of Solution

The ammonium ion is a product of oxidative deamination reaction. A net oxidative deamination reaction is as follows:

α-amino acid+NAD++H2Oα-keto acid+NH4+__+NADH+H+

It is also associated with the urea cycle. It is fuel for the urea cycle however; it is first converted into carbamoyl phosphate and then enters into the cycle. The net urea cycle is as follows:

NH4+__+CO2+3ATP+2H2O+aspartateurea+2ADP+AMP+PPi+fumarate

(c)

Interpretation Introduction

Interpretation: To determine whether NAD+ is associated with (1) transamination, (2) oxidative deamination, or (3) the urea cycle.

Concept introduction: Transamination reaction is a biochemical reaction that involves the transfer of an amino group. In transamination reaction exchange of an amino group from an α-amino acid with a keto group of α-keto acid. There occurs no net loss or gain of amino acid in transamination reaction.

A biochemical reaction in which an α-amino acid is converted into α-keto acid along with the release of an ammonium ion is known as oxidative deamination reaction. A general oxidative deamination reaction is as follows:

α-amino acid+NAD++H2Oα-keto acid+NH4++NADH+H+

A urea cycle is a cyclic biochemical pathway that involves the production of urea using ammonium ions and aspartate molecules as nitrogen sources. The reactants in the formation of carbamoyl phosphate are ammonium ion, water, and carbon dioxide.

(c)

Expert Solution
Check Mark

Answer to Problem 15.74EP

NAD+ is associated with the oxidative deamination reaction.

Explanation of Solution

NAD+ is a coenzyme. Coenzymes are non-protein organic compounds that are used along with the enzymes and help to carry forward the reaction. Coenzymes cannot perform on their own alone.

Oxidative deamination reaction of glutamate requires dehydrogenase enzyme. It is an oxidoreductase enzyme and works with either NADP+ and NAD+ coenzyme. It oxidizes glutamate by reducing the coenzyme used.

The oxidative deamination reaction of glutamate amino acid is as follows:

Organic And Biological Chemistry, Chapter 15, Problem 15.74EP , additional homework tip  2

(d)

Interpretation Introduction

Interpretation: To determine whether aspartate is associated with (1) transamination, (2) oxidative deamination, or (3) the urea cycle.

Concept introduction: Transamination reaction is a biochemical reaction that involves the transfer of an amino group. In transamination reaction exchange of an amino group from an α-amino acid with a keto group of α-keto acid. There occurs no net loss or gain of amino acid in transamination reaction.

A biochemical reaction in which an α-amino acid is converted into α-keto acid along with the release of an ammonium ion is known as oxidative deamination reaction. A general oxidative deamination reaction is as follows:

α-amino acid+NAD++H2Oα-keto acid+NH4++NADH+H+

A urea cycle is a cyclic biochemical pathway that involves the production of urea using ammonium ions and aspartate molecules as nitrogen sources. The reactants in the formation of carbamoyl phosphate are ammonium ion, water, and carbon dioxide.

(d)

Expert Solution
Check Mark

Answer to Problem 15.74EP

Aspartate is associated with the transamination reaction and urea cycle.

Explanation of Solution

Aspartate is a non-essential amino acid. It could function as a product in the transamination reaction.

The reaction is as follows:

Organic And Biological Chemistry, Chapter 15, Problem 15.74EP , additional homework tip  3

Aspartate is also associated with the urea cycle. It is fuel for the urea cycle. It enters directly in step 2 of the cycle and condenses with citrulline to produce argininosuccinate.

Organic And Biological Chemistry, Chapter 15, Problem 15.74EP , additional homework tip  4

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Define each of the following term a. gluconeogenesis b. glycolysis c. isoelectric point d. Active Transport e. Esterification
Which of these reactions take place in both anaerobic and aerobic respiration? A. glycolysis B. citric acid cycle C. electron-transport chain D. acetyl-CoA formation E. all of the above
Modify the given molecule to show the product of the oxidation reaction using NAD+ as the oxidizing agent. Include the appropriate hydrogen atoms and charges. OH O .lari. -CH₂- NAD+ Select Draw Rings More / ||| ||| C 0 H 44 H 4 Erase +NADH- ho given molecule to show the product of the oxidation reaction using FAD as the oxidizing agent. Include the

Chapter 15 Solutions

Organic And Biological Chemistry

Ch. 15.3 - Prob. 4QQCh. 15.3 - Prob. 5QQCh. 15.3 - Prob. 6QQCh. 15.4 - Prob. 1QQCh. 15.4 - Prob. 2QQCh. 15.4 - Prob. 3QQCh. 15.4 - Prob. 4QQCh. 15.4 - Prob. 5QQCh. 15.4 - In the urea cycle, the urea-producing step...Ch. 15.5 - Which of the following statements concerning the...Ch. 15.5 - Prob. 2QQCh. 15.5 - Which of the following statements concerning the...Ch. 15.5 - Prob. 4QQCh. 15.6 - Prob. 1QQCh. 15.6 - Prob. 2QQCh. 15.6 - Prob. 3QQCh. 15.7 - Prob. 1QQCh. 15.7 - Prob. 2QQCh. 15.7 - In the degradation of heme, which of the following...Ch. 15.7 - In the degradation of heme, the iron atom present...Ch. 15.8 - In degradation of the sulfur-containing amino acid...Ch. 15.8 - Prob. 2QQCh. 15.8 - Prob. 3QQCh. 15.8 - Prob. 4QQCh. 15.9 - Prob. 1QQCh. 15.9 - Prob. 2QQCh. 15.9 - Prob. 3QQCh. 15.10 - Transamination reactions require the cofactor PLP...Ch. 15.10 - Prob. 2QQCh. 15.10 - Prob. 3QQCh. 15 - Prob. 15.1EPCh. 15 - Indicate whether each of the following aspects of...Ch. 15 - Prob. 15.3EPCh. 15 - Prob. 15.4EPCh. 15 - Prob. 15.5EPCh. 15 - Prob. 15.6EPCh. 15 - Prob. 15.7EPCh. 15 - Prob. 15.8EPCh. 15 - Prob. 15.9EPCh. 15 - Prob. 15.10EPCh. 15 - Prob. 15.11EPCh. 15 - Prob. 15.12EPCh. 15 - Prob. 15.13EPCh. 15 - Indicate whether each of the following statements...Ch. 15 - Prob. 15.15EPCh. 15 - Prob. 15.16EPCh. 15 - Prob. 15.17EPCh. 15 - What are the four major uses for amino acids...Ch. 15 - With the help of Table 26-1, classify each of the...Ch. 15 - Prob. 15.20EPCh. 15 - Prob. 15.21EPCh. 15 - Prob. 15.22EPCh. 15 - Prob. 15.23EPCh. 15 - Prob. 15.24EPCh. 15 - Prob. 15.25EPCh. 15 - Prob. 15.26EPCh. 15 - Prob. 15.27EPCh. 15 - Prob. 15.28EPCh. 15 - Prob. 15.29EPCh. 15 - Prob. 15.30EPCh. 15 - Prob. 15.31EPCh. 15 - Prob. 15.32EPCh. 15 - Prob. 15.33EPCh. 15 - Prob. 15.34EPCh. 15 - Prob. 15.35EPCh. 15 - Prob. 15.36EPCh. 15 - Prob. 15.37EPCh. 15 - Prob. 15.38EPCh. 15 - Prob. 15.39EPCh. 15 - Prob. 15.40EPCh. 15 - Prob. 15.41EPCh. 15 - Prob. 15.42EPCh. 15 - Draw the structure of the -keto acid produced from...Ch. 15 - Draw the structure of the -keto acid produced from...Ch. 15 - Prob. 15.45EPCh. 15 - Prob. 15.46EPCh. 15 - Prob. 15.47EPCh. 15 - Prob. 15.48EPCh. 15 - Prob. 15.49EPCh. 15 - Prob. 15.50EPCh. 15 - Prob. 15.51EPCh. 15 - Prob. 15.52EPCh. 15 - Prob. 15.53EPCh. 15 - Prob. 15.54EPCh. 15 - What is a carbamoyl group?Ch. 15 - Prob. 15.56EPCh. 15 - Prob. 15.57EPCh. 15 - Prob. 15.58EPCh. 15 - Prob. 15.59EPCh. 15 - Prob. 15.60EPCh. 15 - Prob. 15.61EPCh. 15 - Prob. 15.62EPCh. 15 - Prob. 15.63EPCh. 15 - Prob. 15.64EPCh. 15 - Prob. 15.65EPCh. 15 - Prob. 15.66EPCh. 15 - Prob. 15.67EPCh. 15 - Prob. 15.68EPCh. 15 - Prob. 15.69EPCh. 15 - Prob. 15.70EPCh. 15 - Prob. 15.71EPCh. 15 - Prob. 15.72EPCh. 15 - Prob. 15.73EPCh. 15 - Prob. 15.74EPCh. 15 - Prob. 15.75EPCh. 15 - Prob. 15.76EPCh. 15 - Prob. 15.77EPCh. 15 - Prob. 15.78EPCh. 15 - Prob. 15.79EPCh. 15 - Prob. 15.80EPCh. 15 - Prob. 15.81EPCh. 15 - Prob. 15.82EPCh. 15 - Prob. 15.83EPCh. 15 - Prob. 15.84EPCh. 15 - Prob. 15.85EPCh. 15 - Prob. 15.86EPCh. 15 - Prob. 15.87EPCh. 15 - What is the starting material for the biosynthesis...Ch. 15 - Prob. 15.89EPCh. 15 - Prob. 15.90EPCh. 15 - Prob. 15.91EPCh. 15 - Prob. 15.92EPCh. 15 - Prob. 15.93EPCh. 15 - What are the structural differences between...Ch. 15 - Prob. 15.95EPCh. 15 - Prob. 15.96EPCh. 15 - Which bile pigment is responsible for the yellow...Ch. 15 - Prob. 15.98EPCh. 15 - Prob. 15.99EPCh. 15 - Prob. 15.100EPCh. 15 - Prob. 15.101EPCh. 15 - Prob. 15.102EPCh. 15 - Prob. 15.103EPCh. 15 - Prob. 15.104EPCh. 15 - Prob. 15.105EPCh. 15 - Indicate whether each of the following statements...Ch. 15 - Prob. 15.107EPCh. 15 - Prob. 15.108EPCh. 15 - Prob. 15.109EPCh. 15 - Prob. 15.110EPCh. 15 - Prob. 15.111EPCh. 15 - Prob. 15.112EPCh. 15 - Prob. 15.113EPCh. 15 - Prob. 15.114EPCh. 15 - Prob. 15.115EPCh. 15 - Prob. 15.116EP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Organic And Biological Chemistry
Chemistry
ISBN:9781305081079
Author:STOKER, H. Stephen (howard Stephen)
Publisher:Cengage Learning,
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning