Concept explainers
(a)
Interpretation:
IUPAC name for the given
Concept Introduction:
For naming an aldehyde in
IUPAC rules for naming an aldehyde:
- • The longest parent carbon chain is identified that includes the carbonyl group.
- • The parent chain name is changed by replacing the suffix “-e” with “-al”.
- • Numbering is done in a way that the carbonyl group is designated as number 1. This is not indicated in the part of the name because for aldehyde, the carbonyl carbon is always numbered 1.
- • The identity and location of substituents if any has to be determined and this information has to be added in front of the IUPAC name.
- • If the carbonyl
functional group is attached to a ring of carbon atoms, the ring is named and “-carbaldehyde” is added as suffix.
In a line-angle structural formula, the end point and the point where two lines intersect represent a carbon atom.
(b)
Interpretation:
IUPAC name for the given aldehyde has to be assigned.
Concept Introduction:
For naming an aldehyde in IUPAC nomenclature, the suffix “-al” is added to the parent alkane name.
IUPAC rules for naming an aldehyde:
- • The longest parent carbon chain is identified that includes the carbonyl group.
- • The parent chain name is changed by replacing the suffix “-e” with “-al”.
- • Numbering is done in a way that the carbonyl group is designated as number 1. This is not indicated in the part of the name because for aldehyde, the carbonyl carbon is always numbered 1.
- • The identity and location of substituents if any has to be determined and this information has to be added in front of the IUPAC name.
- • If the carbonyl functional group is attached to a ring of carbon atoms, the ring is named and “-carbaldehyde” is added as suffix.
In a line-angle structural formula, the end point and the point where two lines intersect represent a carbon atom.
(c)
Interpretation:
IUPAC name for the given aldehyde has to be assigned.
Concept Introduction:
For naming an aldehyde in IUPAC nomenclature, the suffix “-al” is added to the parent alkane name.
IUPAC rules for naming an aldehyde:
- • The longest parent carbon chain is identified that includes the carbonyl group.
- • The parent chain name is changed by replacing the suffix “-e” with “-al”.
- • Numbering is done in a way that the carbonyl group is designated as number 1. This is not indicated in the part of the name because for aldehyde, the carbonyl carbon is always numbered 1.
- • The identity and location of substituents if any has to be determined and this information has to be added in front of the IUPAC name.
- • If the carbonyl functional group is attached to a ring of carbon atoms, the ring is named and “-carbaldehyde” is added as suffix.
In a line-angle structural formula, the end point and the point where two lines intersect represent a carbon atom.
(d)
Interpretation:
IUPAC name for the given aldehyde has to be assigned.
Concept Introduction:
For naming an aldehyde in IUPAC nomenclature, the suffix “-al” is added to the parent alkane name.
IUPAC rules for naming an aldehyde:
- • The longest parent carbon chain is identified that includes the carbonyl group.
- • The parent chain name is changed by replacing the suffix “-e” with “-al”.
- • Numbering is done in a way that the carbonyl group is designated as number 1. This is not indicated in the part of the name because for aldehyde, the carbonyl carbon is always numbered 1.
- • The identity and location of substituents if any has to be determined and this information has to be added in front of the IUPAC name.
- • If the carbonyl functional group is attached to a ring of carbon atoms, the ring is named and “-carbaldehyde” is added as suffix.
In a line-angle structural formula, the end point and the point where two lines intersect represent a carbon atom.
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Study Guide with Selected Solutions for Stoker's General, Organic, and Biological Chemistry, 7th
- Give detailed Solution with explanation needed...don't give Ai generated solutionarrow_forwardShow work.....don't give Ai generated solutionarrow_forwardDraw the organic product(s) of the following reaction. CH3 CH3 NBS monosubstitution products CCl4 You do not have to consider stereochemistry. Draw one structure per sketcher. Add additional sketchers using the drop-down menu in the bottom right corner. Separate multiple products using the + sign from the drop-down menu.arrow_forward
- Please correct answer and don't use hand rating and don't use Ai solutionarrow_forwardPlease correct answer and don't use hand rating and don't use Ai solutionarrow_forward(B). [8 pts] Draw both the chair conformations of (1R,25)-1-(tert-butyl)-2-butylcyclohexane and circle the more stable conformation. (C). [8 pts] Draw Fischer projections of the all stereoisomeric 2,3-Dichloro butane. Label each of them as erythro/threo/meso as appropriate.arrow_forward
- Please correct answer and don't use hand ratingarrow_forwardIn this reaction, after they add the epoxide, then they add water. Why doesn't adding water to an epoxide produce a 1,2-diol? Wouldn't the water form a bond with one of the carbons on the ring when it opens the ring?arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning