Chemistry: An Atoms First Approach
2nd Edition
ISBN: 9781305079243
Author: Steven S. Zumdahl, Susan A. Zumdahl
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14, Problem 9RQ
What is an acid–base indicator? Define the equivalence (stoichiometric) point and the end point of a titration. Why should you choose an indicator so that the two points coincide? Do the pH values of the two points have to be within ±0.01 pH unit of each other? Explain.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A chemistry graduate student is given 500. mL of a 1.80M hydrocyanic acid (HCN) solution. Hydrocyanic acid is a weak acid with K,= 4.9 x 10
– 10
What
mass of KCN should the student dissolve in the HCN solution to turn it into a buffer with pH =9.70?
You may assume that the volume of the solution doesn't change when the KCN is dissolved in it. Be sure your answer has a unit symbol, and round it to 2
significant digits.
国 国 回
Which statement about acid-base indicators is not correct? *
A- A weak acid can be used as an acid-base indicator provided that the chemical structures of the weak acid and its conjugate base differ slightly.
B- The end point of the titration is not a specific colour but the point where one drop of acid or base from the burette changes the colour of the solution in the conical flask.
C- Phenolphthalein can be used to detect the end point of the titration of a strong base with a weak acid.
D- All these statements are correct.
E- None of these statements are correct.
A chemistry graduate student is given 450. mL of a 1.70M hydrocyanic acid (HCN) solution. Hydrocyanic acid is a weak acid with K,= 4.9 × 10 ".
What
mass of KCN should the student dissolve in the HCN solution to turn it into a buffer with pH = 8.97?
You may assume that the volume of the solution doesn't change when the KCN is dissolved in it. Be sure your answer has a unit symbol, and round it to 2
significant digits.
Chapter 14 Solutions
Chemistry: An Atoms First Approach
Ch. 14 - What is meant by the presence of a common ion? How...Ch. 14 - Define a buffer solution. What makes up a buffer...Ch. 14 - Prob. 3RQCh. 14 - A good buffer generally contains relatively equal...Ch. 14 - Prob. 5RQCh. 14 - Prob. 6RQCh. 14 - Sketch the titration curve for a weak acid...Ch. 14 - Sketch the titration curve for a weak base...Ch. 14 - What is an acidbase indicator? Define the...Ch. 14 - Prob. 10RQ
Ch. 14 - What are the major species in solution after...Ch. 14 - Prob. 2ALQCh. 14 - Prob. 3ALQCh. 14 - Prob. 4ALQCh. 14 - Sketch two pH curves, one for the titration of a...Ch. 14 - Prob. 6ALQCh. 14 - Prob. 7ALQCh. 14 - You have a solution of the weak acid HA and add...Ch. 14 - The common ion effect for weak acids is to...Ch. 14 - Prob. 10QCh. 14 - Prob. 11QCh. 14 - Consider the following pH curves for 100.0 mL of...Ch. 14 - An acid is titrated with NaOH. The following...Ch. 14 - Consider the following four titrations. i. 100.0...Ch. 14 - Prob. 15QCh. 14 - Prob. 16QCh. 14 - How many of the following are buffered solutions?...Ch. 14 - Which of the following can be classified as buffer...Ch. 14 - A certain buffer is made by dissolving NaHCO3 and...Ch. 14 - Prob. 20ECh. 14 - Calculate the pH of each of the following...Ch. 14 - Calculate the pH of each of the following...Ch. 14 - Prob. 23ECh. 14 - Compare the percent ionization of the base in...Ch. 14 - Prob. 25ECh. 14 - Calculate the pH after 0.020 mole of HCl is added...Ch. 14 - Calculate the pH after 0.020 mole of NaOH is added...Ch. 14 - Calculate the pH after 0.020 mole of NaOH is added...Ch. 14 - Which of the solutions in Exercise 21 shows the...Ch. 14 - Prob. 30ECh. 14 - Calculate the pH of a solution that is 1.00 M HNO2...Ch. 14 - Calculate the pH of a solution that is 0.60 M HF...Ch. 14 - Calculate the pH after 0.10 mole of NaOH is added...Ch. 14 - Calculate the pH after 0.10 mole of NaOH is added...Ch. 14 - Calculate the pH of each of the following buffered...Ch. 14 - Prob. 36ECh. 14 - Calculate the pH of a buffered solution prepared...Ch. 14 - A buffered solution is made by adding 50.0 g NH4Cl...Ch. 14 - Prob. 39ECh. 14 - An aqueous solution contains dissolved C6H5NH3Cl...Ch. 14 - Prob. 41ECh. 14 - Prob. 42ECh. 14 - Consider a solution that contains both C5H5N and...Ch. 14 - Calculate the ratio [NH3]/[NH4+] in...Ch. 14 - Prob. 45ECh. 14 - Prob. 46ECh. 14 - Prob. 47ECh. 14 - Prob. 48ECh. 14 - Calculate the pH of a solution that is 0.40 M...Ch. 14 - Calculate the pH of a solution that is 0.20 M HOCl...Ch. 14 - Which of the following mixtures would result in...Ch. 14 - Prob. 52ECh. 14 - Prob. 53ECh. 14 - Calculate the number of moles of HCl(g) that must...Ch. 14 - Consider the titration of a generic weak acid HA...Ch. 14 - Sketch the titration curve for the titration of a...Ch. 14 - Consider the titration of 40.0 mL of 0.200 M HClO4...Ch. 14 - Consider the titration of 80.0 mL of 0.100 M...Ch. 14 - Consider the titration of 100.0 mL of 0.200 M...Ch. 14 - Prob. 60ECh. 14 - Lactic acid is a common by-product of cellular...Ch. 14 - Repeat the procedure in Exercise 61, but for the...Ch. 14 - Repeat the procedure in Exercise 61, but for the...Ch. 14 - Repeat the procedure in Exercise 61, but for the...Ch. 14 - Prob. 65ECh. 14 - In the titration of 50.0 mL of 1.0 M methylamine,...Ch. 14 - You have 75.0 mL of 0.10 M HA. After adding 30.0...Ch. 14 - A student dissolves 0.0100 mole of an unknown weak...Ch. 14 - Prob. 69ECh. 14 - Prob. 70ECh. 14 - Potassium hydrogen phthalate, known as KHP (molar...Ch. 14 - A certain indicator HIn has a pKa of 3.00 and a...Ch. 14 - Prob. 73ECh. 14 - Prob. 74ECh. 14 - Prob. 75ECh. 14 - Prob. 76ECh. 14 - Prob. 77ECh. 14 - Estimate the pH of a solution in which crystal...Ch. 14 - Prob. 79ECh. 14 - Prob. 80ECh. 14 - Prob. 81AECh. 14 - Prob. 82AECh. 14 - Tris(hydroxymethyl)aminomethane, commonly called...Ch. 14 - Prob. 84AECh. 14 - You have the following reagents on hand: Solids...Ch. 14 - Prob. 86AECh. 14 - Prob. 87AECh. 14 - What quantity (moles) of HCl(g) must be added to...Ch. 14 - Calculate the value of the equilibrium constant...Ch. 14 - The following plot shows the pH curves for the...Ch. 14 - Calculate the volume of 1.50 102 M NaOH that must...Ch. 14 - Prob. 92AECh. 14 - A certain acetic acid solution has pH = 2.68....Ch. 14 - A 0.210-g sample of an acid (molar mass = 192...Ch. 14 - The active ingredient in aspirin is...Ch. 14 - One method for determining the purity of aspirin...Ch. 14 - A student intends to titrate a solution of a weak...Ch. 14 - Prob. 98AECh. 14 - Prob. 99AECh. 14 - Consider 1.0 L of a solution that is 0.85 M HOC6H5...Ch. 14 - Prob. 101CWPCh. 14 - Consider the following acids and bases: HCO2H Ka =...Ch. 14 - Prob. 103CWPCh. 14 - Prob. 104CWPCh. 14 - Consider the titration of 100.0 mL of 0.100 M HCN...Ch. 14 - Consider the titration of 100.0 mL of 0.200 M...Ch. 14 - Prob. 107CWPCh. 14 - Prob. 108CPCh. 14 - A buffer is made using 45.0 mL of 0.750 M HC3H5O2...Ch. 14 - A 0.400-M solution of ammonia was titrated with...Ch. 14 - Prob. 111CPCh. 14 - Consider a solution formed by mixing 50.0 mL of...Ch. 14 - When a diprotic acid, H2A, is titrated with NaOH,...Ch. 14 - Consider the following two acids: In two separate...Ch. 14 - The titration of Na2CO3 with HCl bas the following...Ch. 14 - Prob. 116CPCh. 14 - A few drops of each of the indicators shown in the...Ch. 14 - Malonic acid (HO2CCH2CO2H) is a diprotic acid. In...Ch. 14 - A buffer solution is prepared by mixing 75.0 mL of...Ch. 14 - A 10.00-g sample of the ionic compound NaA, where...Ch. 14 - Prob. 121IPCh. 14 - Prob. 122MP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Write the electron configurations far each of the following elements: (a) Sc. (b) Ti. (c) Cr. (d) Fe. (e) Ru
Chemistry by OpenStax (2015-05-04)
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
How could you separate a mixture of the following compounds? The reagents available to you are water, either, 1...
Organic Chemistry
Draw a Lewis structure for each of the following species: a. H2CO3 b. CO32 c. CH2O d. CO2
Essential Organic Chemistry (3rd Edition)
What is the pH range for acidic solutions? For basic solutions?
Introduction to Chemistry
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- You are given the following acidbase titration data, where each point on the graph represents the pH after adding a given volume of titrant (the substance being added during the titration). a What substance is being titrated, a strong acid, strong base, weak acid, or weak base? b What is the pH at the equivalence point of the tiration? c What indicator might you use to perform this titration? Explain.arrow_forwardConsider the nanoscale-level representations for Question 110 of the titration of the aqueous weak acid HX with aqueous NaOH, the titrant. Water molecules and Na+ ions are omitted for clarity. Which diagram corresponds to the situation: After a very small volume of titrant has been added to the initial HX solution? When enough titrant has been added to take the solution just past the equivalence point? Halfway to the equivalence point? At the equivalence point? Nanoscale representations for Question 110.arrow_forwardConsider the nanoscale-level representations for Question 111 of the titration of the aqueous strong acid HA with aqueous NaOH, the titrant. Water molecules and Na+ ions are omitted for clarity. Which diagram corresponds to the situation: (a) After a very small volume of titrant has been added to the initial HA solution? (b) Halfway to the equivalence point? (c) When enough titrant has been added to take the solution just past the equivalence point? (d) At the equivalence point? Nanoscale representations for Question 111.arrow_forward
- The titration curves for two acids with the same base are shown on this graph. (a) Which is the curve for the weaker acid? Explain your choice. (b) Give the approximate pH at the equivalence point for the titration of each acid. (c) Explain why the pH at the equivalence point differs for each acid. (d) Explain why the starting pH values of the two acids differ. (e) Which indicator or indicators, phenolphthalein, bromthymol blue, or methyl red, could be used for the titration of Acid 1? For the titration of Acid 2? Explain your choices.arrow_forwardA saturated solution of a slightly soluble electrolyte in contact with some of the solid electrolyte is said to be a system in equilibrium. Explain. Why is such a system called a heterogeneous equilibrium?arrow_forwardA solution contains 0.00740 M calcium ion. A concentrated sodium fluoride solution is added dropwise to precipitate calcium fluoride (assume no volume change). a At what concentration of F does precipitate start to form? b When [F] = 9.5 104 M, what is the calcium-ion concentration? What percentage of the calcium ion has precipitated?arrow_forward
- The simplest amino acid is glycine, H2NCH2CO2H. The common feature of amino acids is that they contain the functional groups: an amine group, -NH2, and a carboxylic acid group, -CO2H. An amino acid can function as either an acid or a base. For glycine, the acid strength of the carboxyl group is about the same as that of acetic acid. CH3CO2H, and the base strength of the amino group is slightly greater than that of ammonia, NH3. (a) Write the Lewis structures of the ions that form when glycine is dissolved in 1 M HCl and in 1 M KOH. (b) Write the Lewis structure of glycine when this amino acid is dissolved in water. (Hint: Consider the relative base strengths of the -NH2 and -CO2- groups.)arrow_forwardA buffer is prepared using the butyric acid/butyrate (HC4H7O2/C4H7O2)acid-base pair. The ratio of acid to base is 2.2 and Ka for butyric acid is1.54105. (a) What is the pH of this buffer? (b) Enough strong base is added to convert 15% of butyric acid to the butyrate ion. What is the pH of the resulting solution? (c) Strong acid is added to the buffer to increase its pH. What must the acid/base ratio be so that the pH increases by exactly one unit (e.g., from 2 to 3) from the answer in (a)?arrow_forwardThe titration of 0.100 M acetic acid with 0.100 M NaOH is described in the text. What is the pH of the solution when 35.0 mL of the base has been added to 100.0 mL of 0.100 M acetic acid?arrow_forward
- Phosphate ions are abundant in cells, both as the ions themselves and as important substituents on organic molecules. Most importantly, the pKa for the H2PO4 ion is 7.20, which is very close to the normal pH in the body. H2PO4(aq) + H2O() H3O+(aq) + HPO42(aq) 1. What should the ratio [HPO42]/[H2PO4] be to control the pH at 7.40?arrow_forwardThree students titrate different samples of the same solution of HCI to obtain its molarity. Below are their data. Student A: 20.00mLHCl+20.00mLH2O 0.100 M NaOH used to titrate to the equivalence point Student B: 20.00mLHCl+40.00mLH2O 0.100 M NaOH used to titrate to the equivalence point Student C: 20.00mLHCl+20.00mLH2O 0.100 M Ba(OH)2 used to titrate to the equivalence point. All the students calculated the molarities correctly. Which (if any) of the following statements are true? (a) The molarity calculated by A is half that calculated by B. (b) The molarity calculated by A is equal to that calculated by C. (c) The molarity calculated by B is twice that calculated by C. (d) The molarity calculated by A is twice that calculated by B. (e) The molarity calculated by A is equal to that calculated by B.arrow_forwardThe three flasks shown below depict the titration of an aqueous NaOH solution with HCl at different points. One represents the titration prior to the equivalence point, another represents the titration at the equivalence point, and the other represents the titration past the equivalence point. (Sodium ions and solvent water molecules have been omitted for clarity.) a Write the balanced chemical equation for the titration. b Label each of the beakers shown to indicate which point in the titration they represent. c For each solution, indicate whether you expect it to be acidic, basic, or neutral.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Acid-Base Equilibrium; Author: Bozeman Science;https://www.youtube.com/watch?v=l5fk7HPmo5g;License: Standard YouTube License, CC-BY
Introduction to Titrimetric analysis; Author: Vidya-mitra;https://www.youtube.com/watch?v=uykGVfn9q24;License: Standard Youtube License