Concept explainers
(a)
Interpretation: The
Concept introduction:
The hydrogen ion concentration of the solution is known as
It is the negative logarithm of Hydrogen ion concentration.
The number of moles calculated by taking the volume in milliliter is known as number of milli moles.
To determine: The
(b)
Interpretation: The
Concept introduction:
The hydrogen ion concentration of the solution is known as
It is the negative logarithm of Hydrogen ion concentration.
The number of moles calculated by taking the volume in milliliter is known as number of milli moles.
To determine: The volume of the
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Chemistry: An Atoms First Approach
- The titration of 0.100 M acetic acid with 0.100 M NaOH is described in the text. What is the pH of the solution when 35.0 mL of the base has been added to 100.0 mL of 0.100 M acetic acid?arrow_forwardConsider the nanoscale-level representations for Question 111 of the titration of the aqueous strong acid HA with aqueous NaOH, the titrant. Water molecules and Na+ ions are omitted for clarity. Which diagram corresponds to the situation: (a) After a very small volume of titrant has been added to the initial HA solution? (b) Halfway to the equivalence point? (c) When enough titrant has been added to take the solution just past the equivalence point? (d) At the equivalence point? Nanoscale representations for Question 111.arrow_forwardYou want to make a buffer with a pH of 10.00 from NH4+/NH3. (a) What must the [ NH4+ ]/[ NH3 ]ratio be? (b) How many moles of NH4Cl must be added to 465 mL of an aqueous solution of 1.24 M NH3 to give this pH? (c) How many milliliters of 0.236 M NH3 must be added to 2.08 g of NH4Cl to give this pH? (d) What volume of 0.499 M NH3 must be added to 395 mL, of 0.109 M NH4Cl to give this pH?arrow_forward
- A buffer solution is prepared by dissolving 1.50 g each of benzoic acid, C6H5CO2H, and sodium benzoate, NaC6H5CO2, in 150.0 mL of solution. (a) What is the pH of this buffer solution? (b) Which buffer component must be added, and in what quantity, to change the pH to 4.00? (c) What quantity of 2.0 M NaOH or 2.0 M HCl must be added to the buffer to change the pH to 4.00?arrow_forwardConsider the titration of 100.0 mL of 0.10 M H3AsO4 by 0.10 M NaOH. What are the major species present at 50.0 mL of NaOH added? How would you calculate the pH at this point? Answer the same questions for 150.0 mL of NaOH added. At what volume of NaOH added does pH = pKa1?arrow_forwardConsider the titration of 100.0 mL of 0.200 M acetic acid (Ka = 1.8 105) by 0.100 M KOH. Calculate the pH of the resulting solution after the following volumes of KOH have been added. a. 0.0 mL b. 50.0 mL c. 100.0 mL d. 150.0 mL e. 200.0 mL f. 250.0 mLarrow_forward
- You are given the following acidbase titration data, where each point on the graph represents the pH after adding a given volume of titrant (the substance being added during the titration). a What substance is being titrated, a strong acid, strong base, weak acid, or weak base? b What is the pH at the equivalence point of the tiration? c What indicator might you use to perform this titration? Explain.arrow_forwardConsider the titration of 100.0 mL of 0.200 M HONH2 by 0.100 M HCI. (Kb for HONH2 = 1.1 108.) a. Calculate the pH after 0.0 mL of HCl has been added. b. Calculate the pH after 25.0 mL of HCl has been added. c. Calculate the pH after 70.0 mL of HCl has been added. d. Calculate the pH at the equivalence point. e. Calculate the pH after 300.0 mL of HCl has been added. f. At what volume of HCl added does the pH = 6.04?arrow_forwardThe weak base ethanolamine. HOCH2CH2NH2, can be titrated with HCl. HOCH2CH2NH2(aq)+H3O+(aq)HOCH2CH2NH3+(aq)+H2O(l) Assume you have 25.0 mL of a 0.010 M solution of ethanolamine and titrate it with 0.0095 M HCl. (Kb for ethanolamine is 3.2 107.) (a) What is the pH of the ethanolamine solution before the titration begins? (b) What is the pH at the equivalence point? (c) What is the pH at the halfway point of the titration? (d) Which indicator in Figure 17.11 would be the best choice to detect the equivalence point? (e) Calculate the pH of the solution after adding 5.00, 10.0, 20.0, and 30.0 mL of the acid. (f) Combine the information in parts (a), (b), (c), and (e), and plot an approximate titration curve.arrow_forward
- Repeat the procedure in Exercise 61, but for the titration of 25.0 mL of 0.100 M pyridine with 0.100 M hydrochloric acid (Kb for pyridine is 1.7 109). Do not calculate the points at 24.9 and 25.1 mL.arrow_forwardConsider 1.0 L of a solution that is 0.85 M HOC6H5 and 0.80 M NaOC6H5. (Ka for HOC6H5 = 1.6 1010.) a. Calculate the pH of this solution. b. Calculate the pH after 0.10 mole of HCl has been added to the original solution. Assume no volume change on addition of HCl. c. Calculate the pH after 0.20 mole of NaOH has been added to the original buffer solution. Assume no volume change on addition of NaOH.arrow_forwardA student intends to titrate a solution of a weak monoprotic acid with a sodium hydroxide solution but reverses the two solutions and places the weak acid solution in the buret. After 23.75 mL of the weak acid solution has been added to 50.0 mL of the 0.100 M NaOH solution, the pH of the resulting solution is 10.50. Calculate the original concentration of the solution of weak acid.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning