Concept explainers
(a)
Interpretation:
Two drops of indicator
Concept introduction:
A substance that is expected to change its color in response to a change in the chemical properties of a solution is termed as an indicator. The end point in a titration corresponds to a color change of the solution.
To determine: The initial color of the solution.
(b)
Interpretation:
Two drops of indicator
Concept introduction:
A substance that is expected to change its color in response to a change in the chemical properties of a solution is termed as an indicator. The end point in a titration corresponds to a color change of the solution.
To determine: The initial color of the solution.
(c)
Interpretation:
Two drops of indicator
Concept introduction:
A substance that is expected to change its color in response to a change in the chemical properties of a solution is termed as an indicator. The end point in a titration corresponds to a color change of the solution.
To determine: The initial color of the solution.
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Chemistry: An Atoms First Approach
- A buffer solution is prepared by dissolving 1.50 g each of benzoic acid, C6H5CO2H, and sodium benzoate, NaC6H5CO2, in 150.0 mL of solution. (a) What is the pH of this buffer solution? (b) Which buffer component must be added, and in what quantity, to change the pH to 4.00? (c) What quantity of 2.0 M NaOH or 2.0 M HCl must be added to the buffer to change the pH to 4.00?arrow_forwardThe titration of 0.100 M acetic acid with 0.100 M NaOH is described in the text. What is the pH of the solution when 35.0 mL of the base has been added to 100.0 mL of 0.100 M acetic acid?arrow_forwardConsider die titration of 50.0 mL of 0.10 M H3A (Ka1 = 5.0 104, Ka2 = 1.0 108, Ka3 = 1.0 1012) titrated by 0.10 M KOH. a. Calculate the pH of the resulting solution at 125 mL of KOH added. b. At what volume of KOH added does pH = 3.30? c. At 75.0 mL of KOH added, is the solution acidic or basic?arrow_forward
- Two drops of indicator HIn (Ka = 1.0 109), where HIn is yellow and In is blue, are placed in 100.0 mL of 0.10 M HCl. a. What color is the solution initially? b. The solution is titrated with 0.10 M NaOH. At what pH will the color change (yellow to greenish yellow) occur? c. What color will the solution be after 200.0 mL NaOH has been added?arrow_forwardYou want to make a buffer with a pH of 10.00 from NH4+/NH3. (a) What must the [ NH4+ ]/[ NH3 ]ratio be? (b) How many moles of NH4Cl must be added to 465 mL of an aqueous solution of 1.24 M NH3 to give this pH? (c) How many milliliters of 0.236 M NH3 must be added to 2.08 g of NH4Cl to give this pH? (d) What volume of 0.499 M NH3 must be added to 395 mL, of 0.109 M NH4Cl to give this pH?arrow_forwardA 0.400-g sample of propionic acid was dissolved in water to give 50.0 mL of solution. This solution was titrated with 0.150 M NaOH. What was the pH of the solution when the equivalence point was reached?arrow_forward
- a Draw a pH titration curve that represents the titration of 50.0 mL of 0.10 M NH3 by the addition of 0.10 M HCl from a buret. Label the axes and put a scale on each axis. Show where the equivalence point and the buffer region are on the titration curve. You should do calculations for the 0%, 30%, 50%, and 100% titration points. b Is the solution neutral, acidic, or basic at the equivalence point? Why?arrow_forwardConsider the nanoscale-level representations for Question 110 of the titration of the aqueous weak acid HX with aqueous NaOH, the titrant. Water molecules and Na+ ions are omitted for clarity. Which diagram corresponds to the situation: After a very small volume of titrant has been added to the initial HX solution? When enough titrant has been added to take the solution just past the equivalence point? Halfway to the equivalence point? At the equivalence point? Nanoscale representations for Question 110.arrow_forwardA 30.0-mL sample of 0.05 M HClO is titrated by a 0.0250 M KOH solution Ka for HClO is 3.5 108. Calculate a the pH when no base has been added; b the pH when 30.00 mL of the base has been added; c the pH at the equivalence point; d the pH when an additional 4.00 mL of the KOH solution has been added beyond the equivalence point.arrow_forward
- a Draw a pH titration curve that represents the titration of 25.0 mL of 0.15 M propionic acid. CH3CH2COOH, by the addition of 0.15 M KOH from a buret. Label the axes and put a scale on each axis. Show where the equivalence point and the buffer region are on the titration curve. You should do calculations for the 0%, 50%, 60%, and 100% titration points. b Is the solution neutral, acidic, or basic at the equivalence point? Why?arrow_forwardThe weak base ethanolamine. HOCH2CH2NH2, can be titrated with HCl. HOCH2CH2NH2(aq)+H3O+(aq)HOCH2CH2NH3+(aq)+H2O(l) Assume you have 25.0 mL of a 0.010 M solution of ethanolamine and titrate it with 0.0095 M HCl. (Kb for ethanolamine is 3.2 107.) (a) What is the pH of the ethanolamine solution before the titration begins? (b) What is the pH at the equivalence point? (c) What is the pH at the halfway point of the titration? (d) Which indicator in Figure 17.11 would be the best choice to detect the equivalence point? (e) Calculate the pH of the solution after adding 5.00, 10.0, 20.0, and 30.0 mL of the acid. (f) Combine the information in parts (a), (b), (c), and (e), and plot an approximate titration curve.arrow_forwardConsider 1.0 L of a solution that is 0.85 M HOC6H5 and 0.80 M NaOC6H5. (Ka for HOC6H5 = 1.6 1010.) a. Calculate the pH of this solution. b. Calculate the pH after 0.10 mole of HCl has been added to the original solution. Assume no volume change on addition of HCl. c. Calculate the pH after 0.20 mole of NaOH has been added to the original buffer solution. Assume no volume change on addition of NaOH.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning